用pytorch实现CNN和领域自适应MMD进行样本迁移
时间: 2023-07-20 12:39:56 浏览: 435
基于pytorch框架的深层CNN
好的,这是一个比较专业的问题,我会尽力回答。首先,CNN是卷积神经网络的缩写,它是一种深度学习模型,常用于图像识别和分类任务。PyTorch是一个基于Python的深度学习框架,可以方便地搭建和训练CNN模型。
领域自适应MMD(Domain Adaptive Maximum Mean Discrepancy)是一种用于解决样本迁移问题的方法。它可以帮助解决不同领域之间的数据分布差异问题,从而提高模型的泛化性能。
下面是一个简单的用PyTorch实现CNN和领域自适应MMD进行样本迁移的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from torch.autograd import Variable
from sklearn.metrics.pairwise import rbf_kernel
# 定义CNN模型
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(32, 64, 5)
self.fc1 = nn.Linear(64 * 5 * 5, 1000)
self.fc2 = nn.Linear(1000, 10)
def forward(self, x):
x = self.pool(nn.functional.relu(self.conv1(x)))
x = self.pool(nn.functional.relu(self.conv2(x)))
x = x.view(-1, 64 * 5 * 5)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
# 定义领域自适应MMD损失函数
def mmd_loss(source, target, kernel_mul=2.0, kernel_num=5):
batch_size = source.size()[0]
total = 0
for i in range(batch_size):
s1, s2 = source[i:i+1], source[i+1:batch_size]
t1, t2 = target[i:i+1], target[i+1:batch_size]
ss = torch.cat([s1, s2], dim=0)
tt = torch.cat([t1, t2], dim=0)
s_kernel = rbf_kernel(ss, ss, gamma=kernel_mul, n_components=kernel_num)
t_kernel = rbf_kernel(tt, tt, gamma=kernel_mul, n_components=kernel_num)
st_kernel = rbf_kernel(ss, tt, gamma=kernel_mul, n_components=kernel_num)
total += torch.mean(s_kernel) + torch.mean(t_kernel) - 2 * torch.mean(st_kernel)
return total
# 训练CNN模型并进行领域自适应MMD迁移
def train(model, source_data, target_data, num_epochs=10, lr=0.001):
optimizer = optim.Adam(model.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for i, data in enumerate(source_data, 0):
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
running_loss += loss.item()
loss.backward()
# 计算领域自适应MMD损失
source_features = model(inputs)
target_features = model(next(iter(target_data))[0])
mmd_loss_value = mmd_loss(source_features, target_features)
mmd_loss_value.backward()
optimizer.step()
# 每个epoch结束后输出loss
print('Epoch %d loss: %.3f' %
(epoch + 1, running_loss / len(source_data)))
print('Finished Training')
```
这段代码定义了一个CNN模型,以及用于计算领域自适应MMD损失的函数和训练函数。在训练函数中,我们使用PyTorch的自动求导功能计算CNN模型的交叉熵损失和领域自适应MMD损失,并使用Adam优化器进行模型参数的更新。
阅读全文