索引的预期数据类型为 int64,怎么编写FocalLoss函数并调用且不会出现错误IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1),
时间: 2024-04-29 22:21:18 浏览: 80
在编写 FocalLoss 函数时,需要确保输入的索引数据类型为 int64,并且在调用时也要传入 int64 类型的索引。
例如,以下是一个简单的 FocalLoss 函数的示例:
```python
import torch
import torch.nn.functional as F
def focal_loss(inputs, targets, alpha=0.25, gamma=2.0):
"""
Focal loss function.
"""
# Compute cross entropy loss
ce_loss = F.cross_entropy(inputs, targets, reduction='none')
# Compute focal loss
pt = torch.exp(-ce_loss)
focal_loss = alpha * (1 - pt) ** gamma * ce_loss
return torch.mean(focal_loss)
```
在调用该函数时,需要确保传入的 targets 张量的数据类型为 int64,例如:
```python
inputs = torch.randn(10, 5)
targets = torch.LongTensor([0, 1, 2, 3, 4, 0, 1, 2, 3, 4])
loss = focal_loss(inputs, targets)
```
这样就可以避免出现 IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1) 的错误。
阅读全文