帮我用pytorch写一段CNN和GRU结合的网络模型代码
时间: 2023-08-28 15:50:58 浏览: 105
当然可以帮您写一段使用PyTorch实现CNN和GRU结合的网络模型代码。以下是一个简单的示例:
```python
import torch
import torch.nn as nn
class CNN_GRU_Model(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, num_filters, filter_sizes, dropout):
super(CNN_GRU_Model, self).__init__()
# Embedding layer
self.embedding = nn.Embedding(vocab_size, embedding_dim)
# Convolutional layers
self.convs = nn.ModuleList([
nn.Conv2d(in_channels=1,
out_channels=num_filters,
kernel_size=(fs, embedding_dim))
for fs in filter_sizes
])
# GRU layer
self.gru = nn.GRU(embedding_dim*num_filters, hidden_dim)
# Dropout layer
self.dropout = nn.Dropout(dropout)
# Fully-connected layer
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, text):
# text shape: (seq_len, batch_size)
embedded = self.embedding(text)
# embedded shape: (seq_len, batch_size, embedding_dim)
embedded = embedded.unsqueeze(1)
# embedded shape: (batch_size, 1, seq_len, embedding_dim)
conved = [F.relu(conv(embedded)).squeeze(3) for conv in self.convs]
# conved[i] shape: (batch_size, num_filters, seq_len - filter_sizes[i] + 1)
pooled = [F.max_pool1d(conv, conv.shape[2]).squeeze(2) for conv in conved]
# pooled[i] shape: (batch_size, num_filters)
cat = self.dropout(torch.cat(pooled, dim=1))
# cat shape: (batch_size, num_filters * len(filter_sizes))
_, hidden = self.gru(cat.unsqueeze(0))
# hidden shape: (1, batch_size, hidden_dim)
hidden = self.dropout(hidden.squeeze(0))
# hidden shape: (batch_size, hidden_dim)
output = self.fc(hidden)
# output shape: (batch_size, output_dim)
return output
```
请注意,这只是一个简单的模型示例,您可能需要根据您的具体任务进行适当的修改。此模型将输入文本序列作为参数,并输出对应的预测结果。您可以根据需要调整模型的超参数和层配置。
阅读全文