帮我用python写出N值为41的NTRUsign签名算法,函数自己编写
时间: 2024-03-03 09:50:14 浏览: 190
好的,以下是一个N值为41的NTRUSign签名算法的Python实现示例代码:
```python
import random
# NTRUSign签名算法实现
class NTRUSign:
# 参数定义
class Params:
def __init__(self):
self.N = 41 # N值
self.q = 2048 # 模数
self.p = 47 # 置换多项式的系数
self.d = 7 # 多项式f和g的度数
self.nu = 3 # 噪声的上界
self.beta = 1 # 公钥中的参数
# 生成密钥对
def generate_key_pair(self):
# 生成随机多项式f和g
f = self.generate_random_poly()
g = self.generate_random_poly()
# 计算私钥
h = f.invert(g, self.q)
priv_key = (f, g, h)
# 计算公钥
f_inv = f.invert()
pub_key = (self.beta * f_inv * g) % self.q
return priv_key, pub_key
# 生成随机多项式
def generate_random_poly(self):
coeffs = [random.randint(-self.nu, self.nu) for i in range(self.d)]
return Poly(coeffs, self.q)
# 多项式类
class Poly:
def __init__(self, coeffs, q):
self.coeffs = coeffs
self.q = q
# 多项式加法
def __add__(self, other):
coeffs = [(self.coeffs[i] + other.coeffs[i]) % self.q
for i in range(len(self.coeffs))]
return Poly(coeffs, self.q)
# 多项式减法
def __sub__(self, other):
coeffs = [(self.coeffs[i] - other.coeffs[i]) % self.q
for i in range(len(self.coeffs))]
return Poly(coeffs, self.q)
# 多项式乘法
def __mul__(self, other):
coeffs = [0] * (len(self.coeffs) + len(other.coeffs) - 1)
for i in range(len(self.coeffs)):
for j in range(len(other.coeffs)):
coeffs[i+j] += (self.coeffs[i] * other.coeffs[j])
coeffs = [c % self.q for c in coeffs]
return Poly(coeffs, self.q)
# 多项式取反
def __neg__(self):
coeffs = [-c % self.q for c in self.coeffs]
return Poly(coeffs, self.q)
# 多项式求逆
def invert(self, mod_poly=None):
if not mod_poly:
mod_poly = Poly([1, 0, 1], self.q)
r = self
t = Poly([0], self.q)
new_t = Poly([1], self.q)
while not r.is_zero():
q, _ = divmod(mod_poly, r)
t, new_t = new_t, t - q * new_t
r, mod_poly = mod_poly % r, r
if mod_poly.coeffs[0] != 1:
raise ZeroDivisionError("Polynomial not invertible")
return t * mod_poly.invert()
# 多项式是否为0
def is_zero(self):
return all(c == 0 for c in self.coeffs)
# 多项式转为字节串
def to_bytes(self):
return b"".join([c.to_bytes(2, byteorder="big") for c in self.coeffs])
# 从字节串中还原多项式
@classmethod
def from_bytes(cls, data, q):
coeffs = [int.from_bytes(data[i:i+2], byteorder="big", signed=True) % q
for i in range(0, len(data), 2)]
return cls(coeffs, q)
# 签名
@staticmethod
def sign(priv_key, message):
f, g, h = priv_key
r = NTRUSign.Params().generate_random_poly()
e = NTRUSign.Params().generate_random_poly()
s = (h * r + e - f * Poly(list(message), NTRUSign.Params().q)) % NTRUSign.Params().q
return r.to_bytes() + s.to_bytes()
# 验证签名
@staticmethod
def verify(pub_key, message, signature):
f_inv = Poly([NTRUSign.Params().beta], NTRUSign.Params().q) * pub_key
r = Poly.from_bytes(signature[:84], NTRUSign.Params().q)
s = Poly.from_bytes(signature[84:], NTRUSign.Params().q)
m_calc = (f_inv * s + r).coeffs[0:NTRUSign.Params().d]
return list(message) == m_calc
```
使用示例:
```python
# 生成密钥对
params = NTRUSign.Params()
priv_key, pub_key = params.generate_key_pair()
# 签名
message = b"Hello, world!"
signature = NTRUSign.sign(priv_key, message)
# 验证签名
is_valid = NTRUSign.verify(pub_key, message, signature)
print("Signature is valid:", is_valid)
```
需要注意的是,此代码仅作为示例,实际使用中需要根据具体情况进行修改和完善。
阅读全文