用MPI编程的方式实现Jacobi叠代求解拉普拉斯方程,程序输入矩阵为16*16的方阵,边缘元素均为8,中间元素均为0,算法迭代次数为10次
时间: 2024-02-12 12:02:30 浏览: 74
数值并行算法+MPI编程实现.pdf
好的,我会尽力回答你的问题。下面是一个用MPI编程的方式实现Jacobi叠代求解拉普拉斯方程的代码,此代码可以在16个进程上运行:
```c
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
#define N 16
#define MAX_ITER 10
int main(int argc, char **argv) {
int size, rank, i, j, iter;
double u[N][N], u_old[N][N], u_new[N][N];
double h = 1.0 / (N + 1);
MPI_Status status;
// Initialize MPI
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
// Initialize the matrices
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
u_old[i][j] = u[i][j] = u_new[i][j] = 0.0;
if (i == 0 || j == 0 || i == N - 1 || j == N - 1) {
u_old[i][j] = u[i][j] = u_new[i][j] = 8.0;
}
}
}
// Distribute the work among the processes
int rows_per_proc = N / size;
int start_row = rank * rows_per_proc;
int end_row = start_row + rows_per_proc;
if (rank == size - 1) {
end_row = N;
}
// Jacobi iteration
for (iter = 0; iter < MAX_ITER; iter++) {
// Exchange boundary values with neighboring processes
if (rank > 0) {
MPI_Sendrecv(&u_old[start_row][0], N, MPI_DOUBLE, rank - 1, 0, &u_old[start_row - 1][0], N, MPI_DOUBLE, rank - 1, 0, MPI_COMM_WORLD, &status);
}
if (rank < size - 1) {
MPI_Sendrecv(&u_old[end_row - 1][0], N, MPI_DOUBLE, rank + 1, 0, &u_old[end_row][0], N, MPI_DOUBLE, rank + 1, 0, MPI_COMM_WORLD, &status);
}
// Compute new values for interior points
for (i = start_row + 1; i < end_row - 1; i++) {
for (j = 1; j < N - 1; j++) {
u_new[i][j] = 0.25 * (u_old[i - 1][j] + u_old[i + 1][j] + u_old[i][j - 1] + u_old[i][j + 1]);
}
}
// Copy new values to old values
for (i = start_row; i < end_row; i++) {
for (j = 0; j < N; j++) {
u_old[i][j] = u_new[i][j];
}
}
}
// Gather results from all processes
if (rank == 0) {
for (i = 0; i < rows_per_proc; i++) {
for (j = 0; j < N; j++) {
u[i][j] = u_old[i][j];
}
}
for (i = 1; i < size; i++) {
MPI_Recv(&u[start_row][0], rows_per_proc * N, MPI_DOUBLE, i, 0, MPI_COMM_WORLD, &status);
start_row = i * rows_per_proc;
for (j = start_row; j < start_row + rows_per_proc; j++) {
for (int k = 0; k < N; k++) {
u[j][k] = u_old[j][k];
}
}
}
} else {
MPI_Send(&u_old[start_row][0], rows_per_proc * N, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
}
// Print the final matrix
if (rank == 0) {
printf("Final matrix:\n");
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
printf("%f ", u[i][j]);
}
printf("\n");
}
}
// Finalize MPI
MPI_Finalize();
return 0;
}
```
在这个代码中,我们使用MPI实现了一个分布式的Jacobi迭代算法来解决一个16x16的拉普拉斯方程。每个进程计算一部分矩阵,并交换边界值以确保所有进程之间的一致性。最终,我们将结果从所有进程中收集到主进程,并打印出最终的矩阵。
希望这个代码能够帮到你!如果你有其他问题,欢迎随时提问。
阅读全文