keras古诗生成
时间: 2023-07-09 10:06:58 浏览: 207
用Keras实现RNN+LSTM的模型自动编写古诗, 并将生成的古诗翻译成英文.
要使用Keras生成古诗,可以遵循以下步骤:
1. 准备古诗数据集,可以使用现成的数据集或自己准备数据集。
2. 对数据集进行预处理,包括将文字转换为数字、分割成训练和测试集等。
3. 构建Keras模型,可以使用LSTM或GRU等循环神经网络模型。
4. 训练模型并调整超参数,包括学习率、批次大小、隐藏层单元数等。
5. 生成古诗,给定一些初始文本,使用训练好的模型生成下一个字符,逐步生成完整的古诗。
以下是一个简单的Keras古诗生成代码示例:
```python
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout
from keras.callbacks import ModelCheckpoint
import numpy as np
# 准备数据
with open('poetry.txt', 'r', encoding='utf-8') as f:
poetrys = f.readlines()
poetrys = [poetry.strip() for poetry in poetrys]
poetrys = [poetry for poetry in poetrys if len(poetry) > 10]
words = sorted(list(set("".join(poetrys))))
word_dict = dict((word, idx) for idx, word in enumerate(words))
dict_word = dict((idx, word) for idx, word in enumerate(words))
max_len = max([len(poetry) for poetry in poetrys])
x_data = np.zeros((len(poetrys), max_len, len(words)), dtype=np.bool)
y_data = np.zeros((len(poetrys), max_len, len(words)), dtype=np.bool)
for i, poetry in enumerate(poetrys):
for j, word in enumerate(poetry):
x_data[i, j, word_dict[word]] = 1
if j < len(poetry) - 1:
y_data[i, j, word_dict[poetry[j + 1]]] = 1
# 构建模型
model = Sequential()
model.add(LSTM(128, input_shape=(None, len(words)), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(128, return_sequences=True))
model.add(Dropout(0.2))
model.add(Dense(len(words), activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
# 训练模型
filepath = "weights-improvement-{epoch:02d}-{loss:.4f}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
model.fit(x_data, y_data, batch_size=128, epochs=50, callbacks=callbacks_list)
# 生成古诗
start_str = "静夜思"
generated = start_str
for i in range(50):
x_sample = np.zeros((1, len(generated), len(words)))
for j, word in enumerate(generated):
x_sample[0, j, word_dict[word]] = 1
preds = model.predict(x_sample, verbose=0)[0][-1]
next_word = dict_word[np.argmax(preds)]
generated += next_word
print(generated)
```
这是一个基本的古诗生成模型,可以根据需要进行调整和优化。
阅读全文