古诗生成代码
时间: 2023-07-10 22:04:24 浏览: 101
TensorFlow 2.0 + RNN 实现一个古体诗生成器 附完整代码
5星 · 资源好评率100%
以下是一个简单的古诗生成代码示例,使用了Python和TensorFlow:
```python
import tensorflow as tf
# 定义古诗生成模型
class PoetryModel(tf.keras.Model):
def __init__(self, vocab_size, embedding_dim, rnn_units):
super().__init__(self)
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
self.gru = tf.keras.layers.GRU(rnn_units, return_sequences=True, return_state=True)
self.dense = tf.keras.layers.Dense(vocab_size, activation='softmax')
def call(self, inputs, states=None, return_state=False, training=False):
x = inputs
x = self.embedding(x, training=training)
if states is None:
states = self.gru.get_initial_state(x)
x, states = self.gru(x, initial_state=states, training=training)
if return_state:
return x, states
else:
x = self.dense(x, training=training)
return x
# 加载数据
with open('poetry.txt', 'r', encoding='utf-8') as f:
corpus = f.read()
# 建立词表
vocab = sorted(set(corpus))
char2idx = {char: idx for idx, char in enumerate(vocab)}
idx2char = np.array(vocab)
# 将古诗划分为训练集和目标
seq_length = 100
step = 3
sentences = []
next_chars = []
for i in range(0, len(corpus) - seq_length, step):
sentences.append(corpus[i:i + seq_length])
next_chars.append(corpus[i + seq_length])
x = np.zeros((len(sentences), seq_length), dtype=np.int32)
y = np.zeros((len(sentences),), dtype=np.int32)
for i, sentence in enumerate(sentences):
for t, char in enumerate(sentence):
x[i, t] = char2idx[char]
y[i] = char2idx[next_chars[i]]
# 定义超参数
vocab_size = len(vocab)
embedding_dim = 256
rnn_units = 1024
batch_size = 64
buffer_size = 10000
epochs = 50
# 创建数据集
dataset = tf.data.Dataset.from_tensor_slices((x, y))
dataset = dataset.shuffle(buffer_size).batch(batch_size, drop_remainder=True)
# 实例化模型和优化器
model = PoetryModel(vocab_size, embedding_dim, rnn_units)
optimizer = tf.keras.optimizers.Adam()
# 定义损失函数
def loss_fn(labels, logits):
return tf.keras.losses.sparse_categorical_crossentropy(labels, logits, from_logits=True)
# 定义训练步骤
@tf.function
def train_step(inputs, labels, states):
with tf.GradientTape() as tape:
logits, states = model(inputs, states, return_state=True, training=True)
loss = loss_fn(labels, logits)
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
return loss, states
# 训练模型
for epoch in range(epochs):
states = None
for step, (inputs, labels) in enumerate(dataset):
loss, states = train_step(inputs, labels, states)
if step % 100 == 0:
print(f'Epoch {epoch}, Step {step}, Loss {loss.numpy():.4f}')
```
在上述代码中,我们首先定义了一个`PoetryModel`类,该类继承自`tf.keras.Model`,并包含了嵌入层、GRU层和全连接层。然后我们加载了一个古诗数据集,并将其划分为训练集和目标。接下来,我们定义了一些超参数,创建了一个数据集对象,并实例化了模型和优化器。最后,我们定义了一个训练步骤函数,并使用它来训练模型。
请注意,这只是一个简单的示例,需要根据实际情况进行修改和调整。例如,您可能需要添加更多的层、调整超参数、增加正则化等。
阅读全文