pytorch抑郁症预测模型代码
时间: 2024-04-26 17:19:05 浏览: 188
PyTorch 抑郁症预测模型可以分为以下几个部分:数据预处理、模型构建、模型训练和模型预测。其中,数据预处理包括数据读取、数据清洗和特征提取。模型构建包括构建神经网络模型,定义损失函数和优化器。模型训练包括对模型进行训练、评估和保存。模型预测包括使用训练好的模型进行新数据的预测。
以下是一个简单的 PyTorch 抑郁症预测模型代码示例:
```python
# 数据预处理
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
data = pd.read_csv('depression_data.csv')
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# 模型构建
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(8, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, 1)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = torch.sigmoid(self.fc3(x))
return x
net = Net()
criterion = nn.BCELoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
# 模型训练
for epoch in range(100):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('[%d] loss: %.3f' % (epoch + 1, running_loss / len(trainloader)))
# 模型预测
outputs = net(X_test)
predicted = (outputs > 0.5).float()
accuracy = (predicted == y_test).sum().item() / len(y_test)
print('Accuracy: %.2f %%' % (accuracy * 100))
```
这是一个简单的抑郁症预测模型,仅作为示例。实际应用中,需要根据具体的数据集和任务进行调整和优化。
阅读全文