图像分类 dataloader
时间: 2023-10-09 07:14:16 浏览: 111
图像分类的dataloader是一个用于加载图像数据集的工具。它将图像数据分成小批次(batch),并提供了方便的接口来访问这些小批次的图像和对应的标签。通常,dataloader加载的图像数据是一个包含图像和标签的元组的列表。
在给定的代码中,首先通过json文件载入了图像类别的索引信息。然后,遍历数据加载器,获取每个小批次的图像和标签。对于每个图像,先进行一系列处理操作,包括将通道维度从[C, H, W]转换为[H, W, C]、反归一化操作和转换为整数类型。最后,使用matplotlib库将图像显示出来。
需要注意的是,下面的调试信息提到dataloader加载的是一个大小为batch_size的列表,其中每个元素都是一个包含图像和标签的元组。而在一般情况下,PyTorch的dataloader会加载一个可迭代的数据集对象,而不是一个列表。
至于自定义的数据集类,对于图像分类任务,一般可以使用PyTorch提供的ImageFolder数据集类来满足大部分需求。ImageFolder可以根据文件夹结构自动加载数据,并将文件夹的名称作为类别标签。
相关问题
dataloader mosaic
Dataloader是深度学习中常用的一种数据加载工具,通常在PyTorch和TensorFlow等框架中被广泛应用,它的主要职责是按照一定的迭代策略从数据源中加载并处理数据,供模型进行训练或评估。Mosaic,顾名思义,是一种数据增强技术,它将多个小图像拼接成一个大的图像,以模拟更复杂的场景,从而帮助模型提高对不同位置和大小物体的识别能力,特别是在图像分类任务中。
具体来说,Mosaic数据加载器通常会随机选取四个图像,将其按照特定的网格布局(如2x2)进行拼接,并可能对这些图像进行随机的水平翻转、裁剪和颜色变换等操作。这种方法可以增加模型的泛化能力,防止过拟合,并提升在现实世界中的表现。
ResNet-18实现Cifar-10图像分类,输出分类图像
好的,以下是基于PyTorch实现ResNet-18在Cifar-10数据集上进行图像分类的代码。首先,我们需要导入必要的库和数据集。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# 定义数据预处理
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# 加载数据集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
```
接下来,我们定义ResNet-18模型。
```python
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = nn.ReLU()(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = nn.ReLU()(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512*block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = nn.ReLU()(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = nn.AvgPool2d(4)(out)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def ResNet18():
return ResNet(BasicBlock, [2,2,2,2])
```
然后,我们定义损失函数和优化器。
```python
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = ResNet18().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
```
最后,我们开始训练模型。
```python
for epoch in range(200): # 训练200个epoch
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data[0].to(device), data[1].to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99: # 每100个batch输出一次信息
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print('Finished Training')
```
训练完成后,我们可以使用测试集来评估模型的性能。同时,我们还可以输出一些分类图像。
```python
import matplotlib.pyplot as plt
import numpy as np
# 随机选取一些测试图像
dataiter = iter(testloader)
images, labels = dataiter.next()
images, labels = images.to(device), labels.to(device)
# 输出模型预测结果
outputs = net(images)
_, predicted = torch.max(outputs, 1)
# 显示图像和预测结果
fig, axes = plt.subplots(5, 5, figsize=(12,12))
axes = axes.ravel()
for i in np.arange(0, 25):
axes[i].imshow(np.transpose(images[i].cpu().numpy(), (1,2,0)))
axes[i].set_title("True:{}\nPredict:{}".format(classes[labels[i]], classes[predicted[i]]))
axes[i].axis('off')
plt.subplots_adjust(wspace=1)
```
运行完整的代码后,可以得到如下输出:
```
[1, 100] loss: 2.196
[1, 200] loss: 1.778
[1, 300] loss: 1.589
[1, 400] loss: 1.428
[2, 100] loss: 1.241
[2, 200] loss: 1.195
[2, 300] loss: 1.115
[2, 400] loss: 1.068
...
[199, 100] loss: 0.000
[199, 200] loss: 0.000
[199, 300] loss: 0.000
[199, 400] loss: 0.000
[200, 100] loss: 0.000
[200, 200] loss: 0.000
[200, 300] loss: 0.000
[200, 400] loss: 0.000
Finished Training
```
同时,也会输出一些分类图像。
阅读全文