医学图像分类pytorch
时间: 2023-10-19 22:08:49 浏览: 177
利用pytorch实现图像分类
对于医学图像分类,你可以使用PyTorch来实现。下面是一个简单的示例代码,展示了如何使用PyTorch构建一个基本的医学图像分类模型:
首先,导入必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import models, transforms, datasets
```
然后定义数据预处理的transforms:
```python
data_transforms = {
'train': transforms.Compose([
transforms.Resize(256),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
```
接下来加载数据集:
```python
data_dir = 'path_to_dataset_directory'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
```
定义模型:
```python
model = models.resnet18(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, len(class_names))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)
```
定义损失函数和优化器:
```python
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
```
训练模型:
```python
num_epochs = 10
for epoch in range(num_epochs):
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
```
这只是一个基本的示例,你可以根据自己的需求对代码进行修改和扩展。希望对你有帮助!
阅读全文