unet图像去噪pytorch复现
时间: 2024-08-16 07:00:37 浏览: 102
U-Net是一种深度学习模型,最初用于生物医学图像分割,但它也可以应用于图像去噪任务。在PyTorch中复现U-Net,你可以按照以下步骤操作:
1. **安装依赖**:首先确保已经安装了PyTorch及其相关的库,如torchvision。如果需要,可以运行`pip install torch torchvision`.
2. **网络结构搭建**:创建一个U-Net模型的核心部分,它包括编码器(逐渐降低分辨率,提取特征)和解码器(逐步增加分辨率,恢复细节)。可以参考论文《Image Segmentation through Deep Learning》中的架构。
```python
import torch.nn as nn
from torch.nn import Conv2d, MaxPool2d, UpSample
class UNetBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
super(UNetBlock, self).__init__()
self.encoder = nn.Sequential(
Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding),
nn.ReLU(),
Conv2d(out_channels, out_channels, kernel_size, stride=stride, padding=padding)
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(out_channels, out_channels, kernel_size, stride=stride, padding=padding),
nn.ReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size, stride=stride, padding=padding)
)
def forward(self, x):
skip_connection = x
x = self.encoder(x)
x = self.decoder(x)
return torch.cat((x, skip_connection), dim=1)
# 构建完整的U-Net模型
def create_unet(input_channels, num_classes):
unet = nn.Sequential(
nn.Conv2d(input_channels, 64, 3, padding=1),
nn.MaxPool2d(2, 2),
UNetBlock(64, 128),
nn.MaxPool2d(2, 2),
UNetBlock(128, 256),
nn.MaxPool2d(2, 2),
UNetBlock(256, 512),
nn.MaxPool2d(2, 2),
UNetBlock(512, 1024),
nn.Upsample(scale_factor=2),
UNetBlock(1024, 512),
nn.Upsample(scale_factor=2),
UNetBlock(512, 256),
nn.Upsample(scale_factor=2),
UNetBlock(256, 128),
nn.Upsample(scale_factor=2),
nn.Conv2d(128, num_classes, 1)
)
return unet
```
3. **训练和应用**:准备噪声图像数据、对应干净图像的数据集,然后定义损失函数(如MSE或SSIM)、优化器,并开始训练。训练完成后,对新的噪声图像进行前向传播以获得去噪后的结果。
阅读全文