unet图像分割pytorch代码
时间: 2024-12-16 22:21:32 浏览: 14
Unet图像分割 包含代码注解
UNet是一种流行的卷积神经网络结构,专用于图像分割任务。在PyTorch中实现UNet需要导入必要的库,构建编码器解码器结构,并训练模型。下面是一个简化的UNet代码示例:
```python
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torchvision.transforms import ToTensor
# 定义UNet的基本模块
class UNetBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, dropout_rate=0.5):
super(UNetBlock, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding),
nn.BatchNorm2d(out_channels),
nn.ReLU(),
nn.Dropout(dropout_rate)
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(out_channels, in_channels // 2, kernel_size, stride, padding),
nn.BatchNorm2d(in_channels // 2),
nn.ReLU(),
nn.Dropout(dropout_rate)
)
def forward(self, x):
x1 = self.encoder(x)
return self.decoder(x1)
# 全局定义UNet
class UNet(nn.Module):
def __init__(self, num_classes):
super(UNet, self).__init__()
self.down1 = UNetBlock(3, 64) # 输入通道数为3 (RGB), 输出通道数为64
self.pool1 = nn.MaxPool2d(2, 2)
self.down2 = UNetBlock(64, 128)
self.pool2 = nn.MaxPool2d(2, 2)
self.down3 = UNetBlock(128, 256)
self.pool3 = nn.MaxPool2d(2, 2)
self.center = UNetBlock(256, 512)
self.up3 = UNetBlock(512 + 256, 256)
self.up2 = UNetBlock(256 + 128, 128)
self.up1 = UNetBlock(128 + 64, 64)
self.outconv = nn.Conv2d(64, num_classes, 1)
def forward(self, x):
x1 = self.down1(x)
x2 = self.pool1(x1)
x3 = self.down2(x2)
x4 = self.pool2(x3)
x5 = self.down3(x4)
x = self.pool3(x5)
x = self.center(x)
x = torch.cat((x5, x), dim=1)
x = self.up3(x)
x = torch.cat((x4, x), dim=1)
x = self.up2(x)
x = torch.cat((x3, x), dim=1)
x = self.up1(x)
x = self.outconv(x)
return x
# 示例用法
num_classes = 2 # 二分类问题,比如前景和背景
model = UNet(num_classes)
# 加载数据、设置优化器、损失函数等并开始训练...
```
阅读全文