pytorch框架UNet图像分割代码示例
时间: 2023-10-01 11:04:53 浏览: 169
以下是一个基于PyTorch框架实现的UNet图像分割代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class DoubleConv(nn.Module):
"""Double convolution layer with batch normalization and ReLU activation"""
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class UNet(nn.Module):
"""UNet architecture for image segmentation"""
def __init__(self, in_channels=3, out_channels=1, features=[64, 128, 256, 512]):
super(UNet, self).__init__()
self.downs = nn.ModuleList()
self.ups = nn.ModuleList()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# Encoder
for feature in features:
self.downs.append(DoubleConv(in_channels, feature))
in_channels = feature
# Decoder
for feature in reversed(features):
self.ups.append(nn.ConvTranspose2d(feature*2, feature, kernel_size=2, stride=2))
self.ups.append(DoubleConv(feature*2, feature))
self.bottleneck = DoubleConv(features[-1], features[-1]*2)
self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1)
def forward(self, x):
skip_connections = []
# Encoder
for down in self.downs:
x = down(x)
skip_connections.append(x)
x = self.pool(x)
# Bottleneck
x = self.bottleneck(x)
# Decoder
skip_connections = skip_connections[::-1]
for idx in range(0, len(self.ups), 2):
x = self.ups[idx](x)
skip_connection = skip_connections[idx//2]
if x.shape != skip_connection.shape:
x = F.interpolate(x, size=skip_connection.shape[2:], mode='bilinear', align_corners=True)
x = torch.cat((skip_connection, x), dim=1)
x = self.ups[idx+1](x)
# Final convolution
x = self.final_conv(x)
return x
```
这个代码实现了一个UNet模型,包括Encoder和Decoder部分,以及一个bottleneck层和一个最终的卷积层。UNet模型的核心思想是在Encoder部分通过不断下采样(使用MaxPooling)来提取图像的低级特征,然后在Decoder部分通过上采样(使用ConvTranspose2d)和跳过连接(skip connections)来逐渐恢复图像的分辨率并提取高级特征,最终输出图像的分割结果。在这个实现中,我们使用了双卷积层(DoubleConv)作为UNet的基本构建块,每个双卷积层都包含两个卷积层、批量归一化和ReLU激活函数。UNet的输入是一个3通道的图像,输出是一个1通道的分割结果。可以根据具体的应用场景,调整输入和输出的通道数,以及Encoder和Decoder的层数和特征数。
阅读全文