pytorch实现unet图像分割
时间: 2023-10-01 16:05:25 浏览: 145
Python-Pytorch实现用于图像语义分割UNet
3星 · 编辑精心推荐
Unet是一种用于图像分割的深度学习架构,它由Ronneberger等人在2015年提出,它的结构类似于编码器-解码器(encoder-decoder)。在这里,我将为您介绍如何使用PyTorch实现Unet图像分割。
首先,我们需要导入必要的库:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
接下来,我们定义Unet模型的编码器(encoder)和解码器(decoder)部分。编码器由一系列卷积层组成,每个卷积层后面跟着一个最大池化层。解码器由一系列反卷积层组成,每个反卷积层后面跟着一个卷积层。
```python
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, 3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
x = self.conv(x)
return x
class Unet(nn.Module):
def __init__(self):
super(Unet, self).__init__()
self.max_pool = nn.MaxPool2d(2, 2)
self.down_conv1 = DoubleConv(3, 64)
self.down_conv2 = DoubleConv(64, 128)
self.down_conv3 = DoubleConv(128, 256)
self.down_conv4 = DoubleConv(256, 512)
self.down_conv5 = DoubleConv(512, 1024)
self.up_transpose1 = nn.ConvTranspose2d(1024, 512, 2, stride=2)
self.up_conv1 = DoubleConv(1024, 512)
self.up_transpose2 = nn.ConvTranspose2d(512, 256, 2, stride=2)
self.up_conv2 = DoubleConv(512, 256)
self.up_transpose3 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.up_conv3 = DoubleConv(256, 128)
self.up_transpose4 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.up_conv4 = DoubleConv(128, 64)
self.out_conv = nn.Conv2d(64, 2, 1)
def forward(self, x):
# Encoder
x1 = self.down_conv1(x)
x2 = self.max_pool(x1)
x3 = self.down_conv2(x2)
x4 = self.max_pool(x3)
x5 = self.down_conv3(x4)
x6 = self.max_pool(x5)
x7 = self.down_conv4(x6)
x8 = self.max_pool(x7)
x9 = self.down_conv5(x8)
# Decoder
x = self.up_transpose1(x9)
x = torch.cat([x, x7], dim=1)
x = self.up_conv1(x)
x = self.up_transpose2(x)
x = torch.cat([x, x5], dim=1)
x = self.up_conv2(x)
x = self.up_transpose3(x)
x = torch.cat([x, x3], dim=1)
x = self.up_conv3(x)
x = self.up_transpose4(x)
x = torch.cat([x, x1], dim=1)
x = self.up_conv4(x)
x = self.out_conv(x)
return x
```
在上面的代码中,我们定义了`DoubleConv`类来实现Unet中的双卷积层。我们还定义了`Unet`类,该类包括编码器和解码器部分。`Unet`类的前向函数实现了Unet网络的正向传播,其中使用了卷积、反卷积和池化层。
最后,我们可以使用定义的Unet模型来进行图像分割:
```python
unet = Unet()
x = torch.randn(1, 3, 256, 256)
output = unet(x)
print(output.shape)
```
在上面的代码中,我们首先创建一个Unet模型的实例,然后生成一个随机的输入张量,并通过Unet模型将其传递。最后,我们打印输出张量的形状(shape)。
希望这个简单的教程能够帮助您了解如何使用PyTorch实现Unet图像分割。
阅读全文