pytorch复现u-net
时间: 2025-01-02 18:37:22 浏览: 6
### 使用 PyTorch 实现 U-Net模型,以下是详细的代码示例[^1]。
#### 导入必要的库
```python
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
```
#### 定义双卷积模块
此部分定义了一个基础组件,该组件由两个连续的3×3卷积层组成,每层后面跟着批标准化和ReLU激活函数。
```python
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
```
#### 构建完整的 U-Net 结构
整个网络结构遵循编码器-解码器架构,在下采样路径中逐步减少空间维度的同时增加通道数;而在上采样路径则相反操作,并最终输出与输入尺寸相同的预测图。
```python
class UNet(nn.Module):
def __init__(self, n_class):
super(UNet, self).__init__()
# 下采样/收缩路径
self.down_conv_1 = DoubleConv(3, 64) # 输入RGB三通道图片
self.down_conv_2 = DoubleConv(64, 128)
self.down_conv_3 = DoubleConv(128, 256)
# 中间桥接层
self.double_conv = DoubleConv(256, 512)
# 上采样/扩展路径
self.up_transpose_1 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.up_conv_1 = DoubleConv(512, 256)
self.up_transpose_2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.up_conv_2 = DoubleConv(256, 128)
self.out = nn.Conv2d(128, n_class, kernel_size=1) # 输出类别数量
def forward(self, image):
# 编码过程
x1 = self.down_conv_1(image)
x2 = F.max_pool2d(x1, kernel_size=2, stride=2)
x3 = self.down_conv_2(x2)
x4 = F.max_pool2d(x3, kernel_size=2, stride=2)
x5 = self.down_conv_3(x4)
x6 = F.max_pool2d(x5, kernel_size=2, stride=2)
# 底部瓶颈连接
x7 = self.double_conv(x6)
# 解码过程
x = self.up_transpose_1(x7)
y = crop_img(x5, x.shape[2:]) # 对应裁剪跳跃连接处feature map大小一致
x = self.up_conv_1(torch.cat([x, y], dim=1))
x = self.up_transpose_2(x)
y = crop_img(x3, x.shape[2:])
x = self.up_conv_2(torch.cat([x, y], dim=1))
output = self.out(x)
return output
```
请注意上述`crop_img()`函数未在此展示,其作用是在拼接过程中调整特征图尺寸匹配。实际应用时还需要考虑数据增强、损失函数的选择等问题[^3]。
阅读全文