python的手写数字识别
时间: 2024-01-17 14:19:31 浏览: 82
基于Python实现的手写数字识别系统.zip
5星 · 资源好评率100%
基于Python的手写数字识别可以通过训练模型和使用人工神经网络来实现。下面是两种实现手写数字识别的方法:
1. 使用机器学习库scikit-learn中的数据集和算法来训练模型:
```python
# 导入数据集
from sklearn import datasets
digits = datasets.load_digits()
# 划分数据集为训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.2, random_state=42)
# 训练模型
from sklearn.svm import SVC
model = SVC()
model.fit(X_train, y_train)
# 预测测试集
y_pred = model.predict(X_test)
# 评估模型性能
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)
```
2. 使用Python实现简单的人工神经网络来识别手写数字:
```python
# 导入数据集
from sklearn import datasets
digits = datasets.load_digits()
# 划分数据集为训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.2, random_state=42)
# 数据预处理
X_train = X_train / 16.0
X_test = X_test / 16.0
# 构建神经网络模型
import numpy as np
class NeuralNetwork:
def __init__(self):
np.random.seed(1)
self.weights = 2 * np.random.random((64, 10)) - 1
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(self, x):
return x * (1 - x)
def train(self, X, y, epochs):
for i in range(epochs):
output = self.predict(X)
error = y - output
adjustment = np.dot(X.T, error * self.sigmoid_derivative(output))
self.weights += adjustment
def predict(self, X):
return self.sigmoid(np.dot(X, self.weights))
# 训练模型
nn = NeuralNetwork()
nn.train(X_train, y_train, epochs=1000)
# 预测测试集
y_pred = np.argmax(nn.predict(X_test), axis=1)
# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)
```
阅读全文