python编写自适应积分二值化代码
时间: 2023-11-12 22:07:45 浏览: 73
以下是Python编写自适应积分二值化代码的示例:
```python
import cv2
def adaptive_integral_thresholding(image, block_size=51, constant=2):
# Convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Calculate the integral image
integral = cv2.integral(gray)
# Initialize the output image
output = gray.copy()
# Loop through each pixel in the image
for i in range(gray.shape[0]):
for j in range(gray.shape[1]):
# Calculate the coordinates of the block around the pixel
y1 = max(0, i - block_size // 2)
y2 = min(gray.shape[0] - 1, i + block_size // 2)
x1 = max(0, j - block_size // 2)
x2 = min(gray.shape[1] - 1, j + block_size // 2)
# Calculate the sum and count of pixels in the block
count = (y2 - y1 + 1) * (x2 - x1 + 1)
if y1 == 0 and x1 == 0:
# Special case for the top left corner of the image
s = integral[y2, x2]
elif y1 == 0:
# Special case for the top row of the image
s = integral[y2, x2] - integral[y2, x1 - 1]
elif x1 == 0:
# Special case for the left column of the image
s = integral[y2, x2] - integral[y1 - 1, x2]
else:
# General case
s = integral[y2, x2] - integral[y2, x1 - 1] - integral[y1 - 1, x2] + integral[y1 - 1, x1 - 1]
# Calculate the threshold for the block
threshold = (s / count) + constant
# Set the pixel value in the output image
if gray[i, j] > threshold:
output[i, j] = 255
else:
output[i, j] = 0
return output
```
该函数接受一个彩色图像并返回一个二值化图像,使用自适应积分阈值技术。它计算图像的积分图像,然后对每个像素计算其周围的块的平均值,并使用该平均值加上一个常数作为阈值。如果像素的值大于阈值,则将其设置为255(白色),否则将其设置为0(黑色)。该函数使用默认的块大小为51和常数为2,但可以使用函数的参数进行更改。
阅读全文