select i.id, i.name, i.group_id, i.max_people, i.create_time, u.nick_name, w.shrimp, gb.total, gpo.order_total, gpo.rake_total, gpo.shell_total, gpo.consume_total from im_group_information i left join im_group g on g.group_id = i.group_id and g.admin=2 left join (select group_id, count(group_id) total from im_group where is_delete=0 group by group_id) gb on gb.group_id = i.group_id left join (select bid, count(bid) order_total, sum(rake) rake_total, sum(price) shell_total, count(distinct uid) consume_total from g_prop_order where is_delete=0 group by bid) gpo on gpo.bid = g.u_id left join u_user u on u.id = g.u_id left join u_wallet w on w.id = g.u_id left join (select uid, count(distinct uid) offline_total from u_online_log group by uid) l on g.u_id = l.uid where i.is_delete = 0;怎么查到im_group_information群组表中七天内登陆过的用户数量

时间: 2023-12-21 17:04:24 浏览: 31
可以使用子查询结合条件判断的方式来查询七天内登陆过的用户数量,具体实现如下: ``` SELECT COUNT(DISTINCT l.uid) AS login_total FROM im_group_information i LEFT JOIN im_group g ON g.group_id = i.group_id AND g.admin = 2 LEFT JOIN u_user u ON u.id = g.u_id LEFT JOIN u_online_log l ON g.u_id = l.uid WHERE i.is_delete = 0 AND l.login_time >= DATE_SUB(NOW(), INTERVAL 7 DAY) ``` 这里使用了 `COUNT(DISTINCT l.uid)` 来统计七天内登陆过的用户数量,同时在 `WHERE` 子句中加入条件 `l.login_time >= DATE_SUB(NOW(), INTERVAL 7 DAY)` 来筛选出七天内登陆过的用户。
相关问题

SYS.WRI$_ADV_OBJECTS锁表

SYS.WRI$_ADV_OBJECTS是Oracle数据库中的一个系统表,用于存储PL/SQL程序的编译信息。如果该表被锁定,可能是由于某些正在进行的PL/SQL编译过程导致的。如果你想知道是哪个会话锁定了该表,可以使用以下命令: ``` SELECT s.username, s.sid, s.serial#, l.locked_mode FROM v$session s, v$lock l WHERE s.sid = l.sid AND l.type = 'TM' AND l.id1 = (SELECT object_id FROM dba_objects WHERE owner = 'SYS' AND object_name = 'WRI$_ADV_OBJECTS') ``` 这将返回锁定该表的会话的用户名、SID和序列号。如果需要,你可以终止该会话以释放表锁。但是在终止会话之前,请确保已经了解该会话正在进行的操作,以避免可能的数据丢失或其他问题。

把i2c.c 和 i2c.h写出来

以下是一个简单的I2C库函数的示例,包括i2c.c和i2c.h文件: i2c.h: ```c #ifndef __I2C_H__ #define __I2C_H__ #include "stm32f10x.h" void i2c_init(void); void i2c_write(uint8_t addr, uint8_t *data, uint16_t len); void i2c_read(uint8_t addr, uint8_t *data, uint16_t len); #endif /* __I2C_H__ */ ``` i2c.c: ```c #include "i2c.h" #define I2C_SPEED 100000 // I2C总线速度,单位为Hz void i2c_init(void) { GPIO_InitTypeDef GPIO_InitStruct; I2C_InitTypeDef I2C_InitStruct; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); // 使能GPIOB时钟 RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE); // 使能I2C1时钟 // 配置GPIOB6和GPIOB7为复用推挽输出 GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_OD; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStruct); // 配置I2C1为标准模式,时钟速度为100kHz I2C_InitStruct.I2C_Mode = I2C_Mode_I2C; I2C_InitStruct.I2C_DutyCycle = I2C_DutyCycle_2; I2C_InitStruct.I2C_OwnAddress1 = 0x00; I2C_InitStruct.I2C_Ack = I2C_Ack_Enable; I2C_InitStruct.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit; I2C_InitStruct.I2C_ClockSpeed = I2C_SPEED; I2C_Init(I2C1, &I2C_InitStruct); I2C_Cmd(I2C1, ENABLE); // 使能I2C1 } void i2c_write(uint8_t addr, uint8_t *data, uint16_t len) { uint32_t timeout = 0; while (I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY)) { if (++timeout > 0x10000) return; } I2C_GenerateSTART(I2C1, ENABLE); timeout = 0; while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT)) { if (++timeout > 0x10000) return; } I2C_Send7bitAddress(I2C1, addr << 1, I2C_Direction_Transmitter); timeout = 0; while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED)) { if (++timeout > 0x10000) return; } while (len--) { I2C_SendData(I2C1, *data++); timeout = 0; while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED)) { if (++timeout > 0x10000) return; } } I2C_GenerateSTOP(I2C1, ENABLE); } void i2c_read(uint8_t addr, uint8_t *data, uint16_t len) { uint32_t timeout = 0; while (I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY)) { if (++timeout > 0x10000) return; } I2C_GenerateSTART(I2C1, ENABLE); timeout = 0; while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT)) { if (++timeout > 0x10000) return; } I2C_Send7bitAddress(I2C1, addr << 1, I2C_Direction_Receiver); timeout = 0; while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED)) { if (++timeout > 0x10000) return; } while (len--) { if (len == 0) I2C_AcknowledgeConfig(I2C1, DISABLE); timeout = 0; while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_RECEIVED)) { if (++timeout > 0x10000) return; } *data++ = I2C_ReceiveData(I2C1); } I2C_AcknowledgeConfig(I2C1, ENABLE); I2C_GenerateSTOP(I2C1, ENABLE); } ``` 需要注意的是,上述代码中的RCC_APB2PeriphClockCmd()、RCC_APB1PeriphClockCmd()和GPIO_Init()等函数需要根据具体的STM32开发板和引脚进行修改。同时还需要根据具体的I2C总线速度和使用的I2C模式来修改i2c_init()函数中的配置参数。

相关推荐

最新推荐

recommend-type

[Oracle] dbms_metadata.get_ddl 的使用方法总结

以下是对Oracle中dbms_metadata.get_ddl的用法进行了详细的分析介绍,需要的朋友参考下
recommend-type

Vue.js仿Select下拉框效果

主要为大家详细介绍了Vue.js仿 Select下拉框效果,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

JQuery三级无刷新联动_select(C#版本).doc

JQuery三级无刷新联动_select(C#版本).doc JQuery三级无刷新联动_select(C#版本).doc
recommend-type

layui: layer.open加载窗体时出现遮罩层的解决方法

今天小编就为大家分享一篇layui: layer.open加载窗体时出现遮罩层的解决方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

用SELECT... INTO OUTFILE语句导出MySQL数据的教程

主要介绍了用SELECT... INTO OUTFILE语句导出MySQL数据的教程,是MySQL入门学习中的基础知识,需要的朋友可以参考下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。