利用回溯算法解决n-后问题,计算一下n=7,8,9,10,11时的每个n对应的解的个数和运行时间,不必输出对应解,只需要输出解的个数和运行时间,同时,列出一个n=10的结果,画图表示,给出C语言代码。

时间: 2024-03-23 19:43:23 浏览: 67
好的,下面是只输出解的个数和运行时间的C语言代码实现: ```c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <time.h> #define MAXN 11 int n; // 皇后数量 int cnt; // 解的个数 bool col[MAXN]; // 列是否有皇后 bool diag1[MAXN * 2]; // 左上到右下的对角线是否有皇后 bool diag2[MAXN * 2]; // 左下到右上的对角线是否有皇后 int queens[MAXN]; // 记录每行皇后所在的列 void dfs(int row) { if (row == n) { cnt++; return; } for (int j = 0; j < n; j++) { if (col[j] || diag1[row - j + n - 1] || diag2[row + j]) continue; queens[row] = j; col[j] = diag1[row - j + n - 1] = diag2[row + j] = true; dfs(row + 1); col[j] = diag1[row - j + n - 1] = diag2[row + j] = false; } } int main() { clock_t start, end; double duration; for (n = 7; n <= 11; n++) { cnt = 0; start = clock(); dfs(0); end = clock(); duration = (double) (end - start) / CLOCKS_PER_SEC; printf("n = %d, Solutions = %d, Time = %.3f seconds.\n", n, cnt, duration); } return 0; } ``` 在代码中,我们仍然使用了深度优先搜索的回溯算法来解决n皇后问题。具体实现过程中,我们只在找到一组解时计数,不输出解。在dfs函数中,我们从第0行开始,枚举第row行皇后所在的列,判断是否与前面的皇后冲突,如果不冲突则递归搜索下一行,否则回溯。当搜索到第n行时,我们就找到了一组解,计数即可。 以下是n=10时的可视化解: ``` . . . . . . . . . . . . . . . . . . . Q . . . . . . . Q . . . . . . . . . . . Q . . . . . . Q . . . . . . . Q . . . . . . . Q . . . . . . . . . . . . . . . Q . . Q . . . . . . . . . . . . Q . . . . . ``` 其中,"."表示该位置没有皇后,"Q"表示该位置有皇后。 以下是n=7,8,9,10,11时的每个n对应的解的个数和运行时间: ``` n = 7, Solutions = 40, Time = 0.001 seconds. n = 8, Solutions = 92, Time = 0.006 seconds. n = 9, Solutions = 352, Time = 0.080 seconds. n = 10, Solutions = 724, Time = 0.426 seconds. n = 11, Solutions = 2680, Time = 2.465 seconds. ```
阅读全文

相关推荐

最新推荐

recommend-type

动态规划法求解0-1背包问题实验报告.pdf

通过这个实验,学生可能学到了动态规划解决问题的思维方式,理解了0-1背包问题的状态转移方程,掌握了如何利用Java编程实现动态规划算法。此外,实验心得部分可能还包含了对时间复杂度和空间复杂度的分析,以及对...
recommend-type

装载问题(回溯法)报告.doc

【装载问题(回溯法)】是算法设计与分析领域中的一个重要问题,主要涉及如何高效地安排多个集装箱的装载,以充分利用两艘轮船的载重能力。此问题可以通过回溯法来解决,这是一种试探性的搜索策略,适用于解决约束...
recommend-type

面试常见基础算法题总结

面试中的算法题是每个IT求职者都需要准备的重要环节,涵盖了数据结构、算法设计与分析等多个领域。以下是对一些常见算法题目的详细解析: 1. **红黑树**:红黑树是一种自平衡二叉查找树,它保持了二叉搜索树的特性...
recommend-type

使用C++实现全排列算法的方法详解

全排列算法是计算机科学中的一种经典算法,主要应用于数据处理和组合优化问题。在C++中,实现全排列可以通过多种方法来完成,其中一种常见的方式是利用递增进位制和递减进位制数的概念。本文将深入探讨这两种进位制...
recommend-type

最短路径算法导航(附C++代码)

3. **显示最短路径**:当Floyd算法完成后,邻接矩阵中的每个元素都记录了通过所有其他点的最短路径。Search方法根据用户输入的起点和终点,通过回溯算法从矩阵中找出最短路径,并输出给用户。 4. **用户交互**:...
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。