我想阅读 adc ad7699

时间: 2023-07-15 16:12:59 浏览: 132
AD7699是一款16位、1MSPS的ADC(模数转换器),它具有低功耗、小尺寸、低成本等特点。以下是AD7699的一些基本特性: 1. 输入电压范围:±2.5 V、±5 V、0 V至5 V或0 V至10 V 2. 工作电压:2.7 V至5.25 V 3. 16位分辨率 4. 最大采样速率:1 MSPS 5. SPI接口 6. 内部参考电压 7. 内部可调增益放大器 8. 外部参考电压输入 以下是AD7699的引脚说明: ![AD7699引脚图](https://img-blog.csdn.net/20180518224214977?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3N0YW5kYXJk/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/80) 对于更详细的信息,请参考ADI公司的官方数据手册。
相关问题

我想要一个代码来读取 adc ad7699 的 STM32F732 控制器出厂设置

以下是一个基本的代码示例,用于读取ADC AD7699的出厂设置: ``` #include "stm32f7xx.h" #include "stm32f7xx_hal.h" #define SPI_TIMEOUT 10000 SPI_HandleTypeDef hspi1; void Error_Handler(void); int main(void) { uint16_t adc_config = 0; uint8_t tx_data[2] = {0x00, 0x00}; uint8_t rx_data[2] = {0x00, 0x00}; HAL_Init(); __HAL_RCC_SPI1_CLK_ENABLE(); GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.Pin = GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF5_SPI1; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_16BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.NSS = SPI_NSS_SOFT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLE; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi1.Init.CRCPolynomial = 7; if (HAL_SPI_Init(&hspi1) != HAL_OK) { Error_Handler(); } // Send command to read ADC configuration tx_data[0] = 0x04; // Config register address HAL_SPI_Transmit(&hspi1, tx_data, 1, SPI_TIMEOUT); HAL_SPI_Receive(&hspi1, rx_data, 2, SPI_TIMEOUT); adc_config = rx_data[0] << 8 | rx_data[1]; while(1) { // Do something with the ADC configuration } } void Error_Handler(void) { while(1) { // Error occurred } } ``` 这个代码使用SPI1外设控制器来与ADC AD7699通信。通过SPI传输命令和数据,读取ADC的配置寄存器。注意,此代码仅提供了基本的SPI通信和读取ADC配置的示例,你需要根据你的具体需要进行修改。

我希望代码下载出厂设置并通过stm32f732微控制器读取adc ad7699

好的,首先你需要下载适用于STM32F732微控制器的开发环境,例如Keil或者STM32CubeIDE。然后,你需要将你的ADC AD7699连接到STM32F732微控制器上,并编写相应的代码读取ADC数据。以下是一个简单的代码示例: ```c #include "stm32f7xx.h" #include "stm32f7xx_hal.h" #define ADC_CS_Pin GPIO_PIN_0 #define ADC_CS_GPIO_Port GPIOA SPI_HandleTypeDef hspi1; ADC_HandleTypeDef hadc1; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_SPI1_Init(void); static void MX_ADC1_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_SPI1_Init(); MX_ADC1_Init(); while (1) { // 读取ADC数据 uint16_t adc_value; HAL_GPIO_WritePin(ADC_CS_GPIO_Port, ADC_CS_Pin, GPIO_PIN_RESET); HAL_SPI_Receive(&hspi1, (uint8_t *)&adc_value, 2, HAL_MAX_DELAY); HAL_GPIO_WritePin(ADC_CS_GPIO_Port, ADC_CS_Pin, GPIO_PIN_SET); // 处理ADC数据 // ... HAL_Delay(1000); } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 25; RCC_OscInitStruct.PLL.PLLN = 360; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7) != HAL_OK) { Error_Handler(); } } static void MX_ADC1_Init(void) { ADC_ChannelConfTypeDef sConfig = {0}; __HAL_RCC_ADC1_CLK_ENABLE(); hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4; hadc1.Init.Resolution = ADC_RESOLUTION_16B; hadc1.Init.ScanConvMode = DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DMAContinuousRequests = DISABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } sConfig.Channel = ADC_CHANNEL_0; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } } static void MX_SPI1_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; __HAL_RCC_SPI1_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); GPIO_InitStruct.Pin = ADC_CS_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(ADC_CS_GPIO_Port, &GPIO_InitStruct); hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_16BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.NSS = SPI_NSS_SOFT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLE; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi1.Init.CRCPolynomial = 10; if (HAL_SPI_Init(&hspi1) != HAL_OK) { Error_Handler(); } } static void MX_GPIO_Init(void) { __HAL_RCC_GPIOF_CLK_ENABLE(); } ``` 在这个例子中,ADC使用SPI接口进行通信,片选信号连接到PA0引脚。你需要根据ADC的规格书来设置SPI参数和ADC通道,以确保正确读取数据。

相关推荐

最新推荐

recommend-type

目前常用AD/DA芯片简介

AD/DA芯片是电子设计中的关键元件,它们分别负责模拟信号到数字信号(ADC)和数字信号到模拟信号(DAC)的转换。在现代电子产品中,如通信设备、音频系统、医疗仪器、工业自动化和测试测量设备等领域都有广泛应用。...
recommend-type

FPGA通过SPI对ADC配置系列文章.docx

"FPGA通过SPI对ADC配置系列文章" 这篇文章系列是关于使用FPGA通过SPI对ADC进行配置的系列文章,从原理到代码分析,由浅入深,非常适合学习和参考。本文档涵盖了SPI的基本概念、4线模式和3线模式的SPI配置、FPGA对...
recommend-type

ADC的规则通道和注入通道混合使用

要正确处理这两种通道的数据,理解ADC相关的寄存器和库函数至关重要,比如ADC_DR和ADC_DRJx寄存器,以及ADC_InjectedSequencerLengthConfig()、ADC_InjectedChannelConfig()和ADC_ExternalTrigInjectedConvConfig()...
recommend-type

STM32_ADC多通道采样的例子

在这个例子中,定义了一个二维数组`AD_Value`来存储每个通道的N次转换结果,其中N为50。一旦所有通道的数据都已采集,我们可以计算平均值,并将其存储在数组`After_filter`中。 最后,通过串口通信将处理后的结果...
recommend-type

TMS320F2812 DSP编程之AD采样精度的校准算法

TMS320F2812 DSP编程之AD采样精度的校准算法是为了解决实际使用中ADC转换结果误差较大问题的解决方案。当直接将此转换结果用于控制回路时,必然会降低控制精度。该算法通过对ADC模块的校正,提高了ADC模块转换的准确...
recommend-type

李兴华Java基础教程:从入门到精通

"MLDN 李兴华 java 基础笔记" 这篇笔记主要涵盖了Java的基础知识,由知名讲师李兴华讲解。Java是一门广泛使用的编程语言,它的起源可以追溯到1991年的Green项目,最初命名为Oak,后来发展为Java,并在1995年推出了第一个版本JAVA1.0。随着时间的推移,Java经历了多次更新,如JDK1.2,以及在2005年的J2SE、J2ME、J2EE的命名变更。 Java的核心特性包括其面向对象的编程范式,这使得程序员能够以类和对象的方式来模拟现实世界中的实体和行为。此外,Java的另一个显著特点是其跨平台能力,即“一次编写,到处运行”,这得益于Java虚拟机(JVM)。JVM允许Java代码在任何安装了相应JVM的平台上运行,无需重新编译。Java的简单性和易读性也是它广受欢迎的原因之一。 JDK(Java Development Kit)是Java开发环境的基础,包含了编译器、调试器和其他工具,使得开发者能够编写、编译和运行Java程序。在学习Java基础时,首先要理解并配置JDK环境。笔记强调了实践的重要性,指出学习Java不仅需要理解基本语法和结构,还需要通过实际编写代码来培养面向对象的思维模式。 面向对象编程(OOP)是Java的核心,包括封装、继承和多态等概念。封装使得数据和操作数据的方法结合在一起,保护数据不被外部随意访问;继承允许创建新的类来扩展已存在的类,实现代码重用;多态则允许不同类型的对象对同一消息作出不同的响应,增强了程序的灵活性。 Java的基础部分包括但不限于变量、数据类型、控制结构(如条件语句和循环)、方法定义和调用、数组、类和对象的创建等。这些基础知识构成了编写任何Java程序的基础。 此外,笔记还提到了Java在早期的互联网应用中的角色,如通过HotJava浏览器技术展示Java applet,以及随着技术发展衍生出的J2SE(Java Standard Edition)、J2ME(Java Micro Edition)和J2EE(Java Enterprise Edition)这三个平台,分别针对桌面应用、移动设备和企业级服务器应用。 学习Java的过程中,不仅要掌握语法,还要理解其背后的设计哲学,形成将现实生活问题转化为计算机语言的习惯。通过不断地实践和思考,才能真正掌握Java的精髓,成为一个熟练的Java开发者。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

尝试使用 Python 实现灰度图像的反色运算。反色运 算的基本公式为 T(x,y)=255-S(x,y)。其中,T 代表反色后 的图像,S 代表原始图像

在Python中,我们可以使用PIL库来处理图像,包括进行灰度图像的反色操作。首先,你需要安装Pillow库,如果还没有安装可以使用`pip install pillow`命令。 下面是一个简单的函数,它接受一个灰度图像作为输入,然后通过公式T(x, y) = 255 - S(x, y)计算每个像素点的反色值: ```python from PIL import Image def invert_grayscale_image(image_path): # 打开灰度图像 img = Image.open(image_path).convert('L')
recommend-type

U盘与硬盘启动安装教程:从菜鸟到专家

"本教程详细介绍了如何使用U盘和硬盘作为启动安装工具,特别适合初学者。" 在计算机领域,有时候我们需要在没有操作系统或者系统出现问题的情况下重新安装系统。这时,U盘或硬盘启动安装工具就显得尤为重要。本文将详细介绍如何制作U盘启动盘以及硬盘启动的相关知识。 首先,我们来谈谈U盘启动的制作过程。这个过程通常分为几个步骤: 1. **格式化U盘**:这是制作U盘启动盘的第一步,目的是清除U盘内的所有数据并为其准备新的存储结构。你可以选择快速格式化,这会更快地完成操作,但请注意这将永久删除U盘上的所有信息。 2. **使用启动工具**:这里推荐使用unetbootin工具。在启动unetbootin时,你需要指定要加载的ISO镜像文件。ISO文件是光盘的镜像,包含了完整的操作系统安装信息。如果你没有ISO文件,可以使用UltraISO软件将实际的光盘转换为ISO文件。 3. **制作启动盘**:在unetbootin中选择正确的ISO文件后,点击开始制作。这个过程可能需要一些时间,完成后U盘就已经变成了一个可启动的设备。 4. **配置启动文件**:为了确保电脑启动后显示简体中文版的Linux,你需要将syslinux.cfg配置文件覆盖到U盘的根目录下。这样,当电脑从U盘启动时,会直接进入中文界面。 接下来,我们讨论一下光盘ISO文件的制作。如果你手头有物理光盘,但需要将其转换为ISO文件,可以使用UltraISO软件的以下步骤: 1. **启动UltraISO**:打开软件,找到“工具”菜单,选择“制作光盘映像文件”。 2. **选择源光盘**:在CD-ROM选项中,选择包含你想要制作成ISO文件的光盘的光驱。 3. **设定输出信息**:确定ISO文件的保存位置和文件名,这将是你的光盘镜像文件。 4. **开始制作**:点击“制作”,软件会读取光盘内容并生成ISO文件,等待制作完成。 通过以上步骤,你就能成功制作出U盘启动盘和光盘ISO文件,从而能够灵活地进行系统的安装或修复。如果你在操作过程中遇到问题,也可以访问提供的淘宝小店进行交流和寻求帮助。 U盘和硬盘启动安装工具是计算机维护和系统重装的重要工具,了解并掌握其制作方法对于任何级别的用户来说都是非常有益的。随着技术的发展,U盘启动盘由于其便携性和高效性,已经成为了现代装机和应急恢复的首选工具。