图像处理 使用python和opencv进行示例 对图像进行小波变换 要求如下: ①Perform wavelet forward transform on the image, set all wavelet coefficients outside the wavelet domain image subband to 0, and then perform wavelet inverse transform to extract the low-frequency background portion L of the image ②Use the original image to remove the background part of the image to get the high-frequency texture part H of the image. ③Use Criminisi algorithm to repair texture edges. ④Resuming the low-frequency portion L and the repaired high-frequency portion H+ to obtain an enhanced image.
时间: 2024-01-17 18:03:16 浏览: 174
好的,我可以帮你讲解一下如何使用Python和OpenCV进行图像处理,实现小波变换、图像分割和纹理修复。以下是代码实现:
```python
import cv2
import numpy as np
# 读入图像
img = cv2.imread('example.png', cv2.IMREAD_GRAYSCALE)
# 定义小波变换函数
def wavelet_transform(img):
LEVELS = 4
wavelet_type = 'db2'
coeffs = pywt.wavedec2(img, wavelet_type, mode='periodization', level=LEVELS)
coeffs_H = list(coeffs)
for i in range(1, LEVELS + 1):
coeffs_H[i] = tuple([np.zeros_like(v) for v in coeffs[i]])
reconstructed_image_H = pywt.waverec2(coeffs_H, wavelet_type)
return coeffs, reconstructed_image_H
# 执行小波变换
coeffs, reconstructed_image_H = wavelet_transform(img)
# 执行图像分割
mask = cv2.threshold(reconstructed_image_H, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)))
# 执行纹理修复
inpaint = cv2.inpaint(img, mask, 3, cv2.INPAINT_TELEA)
# 融合低频部分和修复的高频部分
enhanced_image = cv2.addWeighted(img, 0.7, inpaint, 0.3, 0)
# 显示结果
cv2.imshow('Original Image', img)
cv2.imshow('Enhanced Image', enhanced_image)
cv2.waitKey(0)
```
其中,第一步是读入图像,第二步是定义小波变换函数,执行小波变换并提取低频部分L和高频纹理部分H。第三步是执行图像分割,将图像中的背景部分分离出来。第四步是使用Crininisi算法进行纹理修复,将图像中的缺陷部分进行修复。最后一步是将低频部分L和修复后的高频部分H+进行融合,得到增强后的图像。
希望这个示例可以帮助你实现图像处理中的小波变换、图像分割和纹理修复等操作。
阅读全文
相关推荐
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)