滤波器组归一化实现代码
时间: 2023-06-14 14:06:09 浏览: 270
滤波器组归一化(Filter Group Normalization,FGN)是一种针对卷积神经网络(CNN)中卷积层的归一化方法。和批量归一化(Batch Normalization,BN)不同,FGN对每个卷积核的输出进行归一化,而BN是对每个batch的输出进行归一化。以下是一个简单的FGN实现代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class FGN(nn.Module):
def __init__(self, num_features, num_groups):
super(FGN, self).__init__()
self.num_features = num_features
self.num_groups = num_groups
self.gamma = nn.Parameter(torch.ones(1, num_features, 1, 1))
self.beta = nn.Parameter(torch.zeros(1, num_features, 1, 1))
def forward(self, x):
batch_size, num_channels, height, width = x.size()
group_size = num_channels // self.num_groups # 计算每组包含的通道数
x = x.view(batch_size, self.num_groups, group_size, height, width) # 将通道维度分组
mean = x.mean(dim=[2, 3, 4], keepdim=True)
var = x.var(dim=[2, 3, 4], keepdim=True)
x = (x - mean) / torch.sqrt(var + 1e-5)
x = x.view(batch_size, num_channels, height, width)
return self.gamma * x + self.beta # 缩放和平移
```
在这个实现中,我们定义了一个FGN类,它接受两个参数:num_features和num_groups,分别表示每个卷积核的输出通道数和分组数。在类的构造函数中,我们创建了两个可学习的参数gamma和beta,用于缩放和平移归一化后的输出。
在forward函数中,我们首先将输入x视为一个四维张量,其形状为(batch_size, num_channels, height, width),其中num_channels为卷积核的输入通道数。我们根据num_groups将num_channels分成了self.num_groups组,计算每组的均值和方差,并对每个通道进行归一化操作。最后,我们将分组后的通道维度还原,将输出形状变为(batch_size, num_channels, height, width)。最后,我们使用可学习的参数gamma和beta对归一化后的输出进行缩放和平移操作,得到最终的输出。
阅读全文