torch实现添加注意力机制的LSTM神经网络预测
时间: 2023-07-07 18:38:24 浏览: 92
基于torch实现cnn+lstm+attention 模型时间序列预测 代码模板 通用
5星 · 资源好评率100%
好的,我可以为您介绍一下如何使用 PyTorch 实现带有注意力机制的 LSTM 神经网络预测。下面是实现步骤:
1. 导入 PyTorch 库,定义超参数和设备类型。
```python
import torch
import torch.nn as nn
# 定义超参数
input_size = 1
hidden_size = 64
num_layers = 2
output_size = 1
seq_len = 10
batch_size = 32
learning_rate = 0.001
num_epochs = 1000
# 定义设备类型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
```
2. 加载数据集并进行预处理。
```python
# 加载数据集
data = # your dataset
# 对数据进行预处理
data = torch.Tensor(data).unsqueeze(-1)
# 划分训练集和测试集
train_data = data[:800]
test_data = data[800:]
```
3. 定义注意力机制模块。
```python
class Attention(nn.Module):
def __init__(self, hidden_size):
super(Attention, self).__init__()
self.hidden_size = hidden_size
self.attn = nn.Linear(self.hidden_size * 2, seq_len)
self.softmax = nn.Softmax(dim=1)
def forward(self, hidden, encoder_outputs):
# 将隐藏状态复制 seq_len 次
hidden = hidden.repeat(seq_len, 1, 1)
# 将隐藏状态和编码器输出拼接在一起
energy = torch.cat((hidden, encoder_outputs), dim=2)
# 计算注意力权重
energy = energy.view(-1, self.hidden_size * 2)
attn_weights = self.softmax(self.attn(energy).view(batch_size, -1, seq_len))
# 将注意力权重与编码器输出相乘并求和
context = torch.bmm(attn_weights, encoder_outputs)
return context
```
4. 定义带有注意力机制的 LSTM 神经网络模型。
```python
class LSTMAttention(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTMAttention, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.attention = Attention(hidden_size)
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
# 初始化隐藏状态和细胞状态
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
# 前向传播
out, (h, c) = self.lstm(x, (h0, c0))
# 计算注意力权重并加权求和
context = self.attention(h[-1], out)
# 最后一层的输出作为预测值
out = self.fc(context)
return out
```
5. 定义损失函数和优化器。
```python
model = LSTMAttention(input_size, hidden_size, num_layers, output_size).to(device)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
```
6. 训练模型。
```python
for epoch in range(num_epochs):
for i in range(0, len(train_data) - seq_len, seq_len):
# 获取输入和标签
x = train_data[i:i+seq_len]
y = train_data[i+seq_len:i+seq_len+1]
# 将输入和标签移到设备上
x = x.to(device)
y = y.to(device)
# 前向传播、计算损失和反向传播
output = model(x)
loss = criterion(output, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 100 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
```
7. 测试模型并可视化预测结果。
```python
with torch.no_grad():
test_inputs = test_data[:-1].to(device)
test_labels = test_data[1:].to(device)
test_outputs = model(test_inputs)
plt.plot(test_labels.squeeze().cpu(), label='true')
plt.plot(test_outputs.squeeze().cpu().detach().numpy(), label='predicted')
plt.legend()
plt.show()
```
以上就是使用 PyTorch 实现带有注意力机制的 LSTM 神经网络预测的全部步骤,希望能对您有所帮助。
阅读全文