def latlon_to_pixel(lat, lon): x = int((lon - min_lon) / lon_ratio) y = int((max_lat - lat) / lat_ratio) return x, y
时间: 2023-06-14 20:03:22 浏览: 108
这段代码的作用是将给定的经纬度坐标(lat, lon)转换为像素坐标(x, y)。其中,min_lon和max_lat分别是地图的最小经度和最大纬度,lon_ratio和lat_ratio分别是经度和纬度的比率(即每个像素所代表的经度和纬度值)。这里使用了整数除法,因为像素坐标必须是整数值。返回的坐标表示了经纬度坐标在地图上的对应像素位置。
相关问题
优化这段代码:import math # 定义一个测试栅格划的经纬度 test_lon = 114 test_lat = 22.5 # 划定栅格划分范围 min_lon = 113.75194 max_lon = 114.624187 min_lat = 22.447837 max_lat = 22.864748 # 定义栅格大小(单位m) accuracy = 500 # 计算栅格的经纬度增加量大小 delta_lon = accuracy * 360 / (2 * math.pi * 6371004 * math.cos((min_lat + max_lat) * math.pi / 360)) delta_lat = accuracy * 360 / (2 * math.pi * 6371004) # 计算栅格的经纬度编号 lon_col = (test_lon - (min_lon - delta_lon / 2)) // delta_lon lat_col = (test_lat - (min_lat - delta_lat / 2)) // delta_lat # 计算栅格的中心点经纬度 half_delta_lon = delta_lon / 2 half_delta_lat = delta_lat / 2 hb_lon = lon_col * delta_lon + min_lon - half_delta_lon hb_lat = lat_col * delta_lat + min_lat - half_delta_lat print(lon_col, lat_col, hb_lon, hb_lat, delta_lon, delta_lat)
这段代码的目的是将给定的经纬度划分到以 `accuracy` 为大小的栅格中,然后计算出栅格的中心点经纬度。以下是一些代码优化的建议:
1. 可以将常用的参数值保存在变量中,以便多次使用。例如,可以将栅格划分范围和栅格大小保存在变量中,然后在计算经纬度增量和栅格编号时使用这些变量。
2. 可以使用更具描述性的变量名,以便更容易理解代码的功能。例如,可以将 `lon_col` 改为 `longitude_index`,将 `hb_lon` 改为 `center_longitude`。
3. 可以使用更简洁的语法来计算经纬度增量和栅格编号。例如,可以使用 `numpy` 库的 `arange()` 方法生成等差数组,然后使用 `numpy` 库的 `digitize()` 方法将经纬度划分到栅格中。
4. 可以使用文档字符串来解释代码的功能和参数,以便更易读和维护。
下面是优化后的代码示例:
```
import math
import numpy as np
# 设置常用参数
min_longitude = 113.75194
max_longitude = 114.624187
min_latitude = 22.447837
max_latitude = 22.864748
accuracy = 500
def get_grid_center_point(lon, lat, accuracy):
"""
将给定的经纬度划分到以accuracy为大小的栅格中,然后计算出栅格的中心点经纬度。
:param lon: 经度
:param lat: 纬度
:param accuracy: 栅格大小(单位m)
:return: 栅格中心点的经纬度
"""
# 计算栅格的经纬度增加量大小
delta_lon = accuracy * 360 / (2 * math.pi * 6371004 * math.cos((min_latitude + max_latitude) * math.pi / 360))
delta_lat = accuracy * 360 / (2 * math.pi * 6371004)
# 计算栅格的经纬度编号
longitude_index = np.arange(min_longitude, max_longitude, delta_lon)
latitude_index = np.arange(min_latitude, max_latitude, delta_lat)
lon_col = np.digitize(lon, longitude_index) - 1
lat_col = np.digitize(lat, latitude_index) - 1
# 计算栅格的中心点经纬度
half_delta_lon = delta_lon / 2
half_delta_lat = delta_lat / 2
center_longitude = lon_col * delta_lon + min_longitude - half_delta_lon
center_latitude = lat_col * delta_lat + min_latitude - half_delta_lat
return center_longitude, center_latitude
# 调用函数计算栅格中心点经纬度
test_lon = 114
test_lat = 22.5
center_lon, center_lat = get_grid_center_point(test_lon, test_lat, accuracy)
# 打印结果
print(center_lon, center_lat)
```
使用 `numpy` 库的 `arange()` 方法生成等差数组,然后使用 `numpy` 库的 `digitize()` 方法将经纬度划分到栅格中,从而使代码更简洁和易读。同时,添加了文档字符串来解释函数的功能和参数。
import numpy as np # 定义地球椭球体参数 a = 6378137.0 # 长半轴,单位:米 f = 1 / 298.257223563 # 扁率 b = a * (1 - f) # 短半轴,单位:米 e2 = 1 - (b ** 2) / (a ** 2) # 第一偏心率的平方 # 大地坐标到地心直角坐标的转换 def geodetic_to_ecef(lat, lon, h): lat_rad = np.deg2rad(lat) lon_rad = np.deg2rad(lon) N = a / np.sqrt(1 - e2 * np.sin(lat_rad) ** 2) x = (N + h) * np.cos(lat_rad) * np.cos(lon_rad) y = (N + h) * np.cos(lat_rad) * np.sin(lon_rad) z = (N * (1 - e2) + h) * np.sin(lat_rad) return x, y, z # 地心直角坐标到大地坐标的转换 def ecef_to_geodetic(x, y, z): p = np.sqrt(x ** 2 + y ** 2) lon_rad = np.arctan2(y, x) lat_rad = np.arctan2(z, p * (1 - e2)) # 使用迭代法求解大地纬度 while True: N = a / np.sqrt(1 - e2 * np.sin(lat_rad) ** 2) h = p / np.cos(lat_rad) - N new_lat_rad = np.arctan2(z, p * (1 - e2 * N / (N + h))) if np.abs(new_lat_rad - lat_rad) < 1e-12: break lat_rad = new_lat_rad lat = np.rad2deg(lat_rad) lon = np.rad2deg(lon_rad) return lat, lon, h
这段代码实现了大地坐标系与地心直角坐标系之间的转换,具体实现包括:
1. 定义了地球椭球体参数:长半轴 a、扁率 f、短半轴 b、第一偏心率的平方 e2。
2. 实现了从大地坐标系转换到地心直角坐标系的函数 geodetic_to_ecef,输入参数为大地纬度 lat、大地经度 lon 和高程 h,输出参数为在地心直角坐标系下的 x、y、z 坐标。
3. 实现了从地心直角坐标系转换到大地坐标系的函数 ecef_to_geodetic,输入参数为在地心直角坐标系下的 x、y、z 坐标,输出参数为大地纬度 lat、大地经度 lon 和高程 h。
其中,大地坐标系是指以地球椭球体为基准,以地球表面上某一点为原点建立的坐标系;地心直角坐标系是指以地球中心为原点建立的坐标系。
该代码使用了 numpy 库中的数学函数,包括 np.deg2rad、np.arctan2、np.sin、np.cos、np.sqrt、np.abs、np.rad2deg 等。
阅读全文