config = tf.ConfigProto(allow_soft_placement=True) AttributeError: module 'tensorflow' has no attribute 'ConfigProto'
时间: 2023-10-18 21:18:04 浏览: 159
在TensorFlow 2.x中,`tf.ConfigProto`已经被弃用并移除了。相反,您可以使用`tf.compat.v1.ConfigProto`来创建一个`ConfigProto`对象,例如:
```
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
config = tf.ConfigProto(allow_soft_placement=True)
```
请注意,在使用TensorFlow 2.x时,您需要在代码中包含`tf.disable_v2_behavior()`以使用旧的TensorFlow 1.x API。此外,`allow_soft_placement`选项已经成为默认值,因此您可以省略它。
相关问题
def test(checkpoint_dir, style_name, test_dir, if_adjust_brightness, img_size=[256,256]): # tf.reset_default_graph() result_dir = 'results/'+style_name check_folder(result_dir) test_files = glob('{}/*.*'.format(test_dir)) test_real = tf.placeholder(tf.float32, [1, None, None, 3], name='test') with tf.variable_scope("generator", reuse=False): test_generated = generator.G_net(test_real).fake saver = tf.train.Saver() gpu_options = tf.GPUOptions(allow_growth=True) with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options)) as sess: # tf.global_variables_initializer().run() # load model ckpt = tf.train.get_checkpoint_state(checkpoint_dir) # checkpoint file information if ckpt and ckpt.model_checkpoint_path: ckpt_name = os.path.basename(ckpt.model_checkpoint_path) # first line saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name)) print(" [*] Success to read {}".format(os.path.join(checkpoint_dir, ckpt_name))) else: print(" [*] Failed to find a checkpoint") return # stats_graph(tf.get_default_graph()) begin = time.time() for sample_file in tqdm(test_files) : # print('Processing image: ' + sample_file) sample_image = np.asarray(load_test_data(sample_file, img_size)) image_path = os.path.join(result_dir,'{0}'.format(os.path.basename(sample_file))) fake_img = sess.run(test_generated, feed_dict = {test_real : sample_image}) if if_adjust_brightness: save_images(fake_img, image_path, sample_file) else: save_images(fake_img, image_path, None) end = time.time() print(f'test-time: {end-begin} s') print(f'one image test time : {(end-begin)/len(test_files)} s'什么意思
这是一个 Python 函数,该函数接受五个参数:`checkpoint_dir`,`style_name`,`test_dir`,`if_adjust_brightness` 和 `img_size`。该函数使用 TensorFlow 实现了一个测试函数,用于测试训练好的 AnimeGAN V2 模型生成的效果。在函数中,首先使用 `glob` 函数获取测试图片的路径列表,然后使用 TensorFlow 定义了一个占位符 `test_real`,用于输入测试图片。接着,使用 AnimeGAN V2 模型生成器 `generator.G_net` 生成虚假图像 `test_generated`。随后,使用 TensorFlow 定义了一个 Saver 对象,用于从检查点文件中恢复模型。最后,使用 TensorFlow Session 对象运行生成器模型,生成对应的虚假图像,并将其保存到指定的目录中。
其中,如果 `if_adjust_brightness` 为真,则调用 `save_images` 函数保存虚假图像,并调用 `load_test_data` 函数加载测试图片并调整亮度;否则,调用 `save_images` 函数保存虚假图像,但不会调用 `load_test_data` 函数调整亮度。函数还输出了测试的总时间和每张图片测试所需的时间。
AttributeError: module 'tensorflow.python._pywrap_tensorflow_internal' has no attribute 'TFE_DEVICE_PLACEMENT_EXPLICIT'
针第一个问题,您遇到的错误是'AttributeError: module 'tensorflow.compat.v1' has no attribute 'contrib''。这个错误通常是由于您使用的TensorFlow版本不兼容导致的。在较新的TensorFlow版本中,'contrib'模块已被移除,所以您无法使用它。要解决这个问题,您可以尝试以下几种方法:
1. 检查您的TensorFlow版本是否较新。您可以使用命令"pip show tensorflow"查看您当前安装的TensorFlow版本。如果您的版本较新,请尝试降级到较旧的版本,或者更新您的代码以适应新版TensorFlow。
2. 如果您的代码依赖于'contrib'模块中的特定功能,您可以尝试使用其他替代方法来实现相同的功能。查看TensorFlow的官方文档和社区论坛,寻找替代方法或建议。
3. 如果您只是想消除警告信息,您可以尝试在代码的开头添加以下行:import tensorflow.compat.v1 as tf tf.disable_v2_behavior()。这将启用TensorFlow的兼容性模式,以便您可以继续使用旧版的'contrib'模块。
针对第二个问题,您遇到的错误是'AttributeError: 'module' object has no attribute 'scalar_summary''。这个错误通常是由于您使用的TensorFlow版本不兼容导致的。在较新的版本中,'scalar_summary'已被废弃,取而代之的是'tf.summary.scalar'。要解决这个问题,您可以尝试修改代码中的'tf.scalar_summary'为'tf.summary.scalar'。
针对第三个问题,您遇到的错误是'AttributeError: 'module' object has no attribute 'merge_all_summaries''。同样地,这个错误通常是由于TensorFlow版本不兼容而导致的。在较新的版本中,'merge_all_summaries'已被废弃,取而代之的是'tf.summary.merge_all'。您需要将代码中的'tf.merge_all_summaries'修改为'tf.summary.merge_all'。
关于您的补充问题,'AttributeError: module 'tensorflow.python._pywrap_tensorflow_internal' has no attribute 'TFE_DEVICE_PLACEMENT_EXPLICIT''。根据错误信息,它表明您正在尝试访问名为'TFE_DEVICE_PLACEMENT_EXPLICIT'的属性,但该属性在您使用的TensorFlow模块中不存在。可能的原因是您正在使用的TensorFlow版本不支持此属性,或者您没有正确导入或设置相应的模块。您可以尝试检查您的TensorFlow版本以及导入和设置相关模块的正确性。如果问题仍然存在,请尝试在TensorFlow的官方文档和社区论坛中寻找相关解决方案或建议。
阅读全文