使用指针将一个指定地址(0x20001000)的值赋给已声明的变量(char a)

时间: 2024-04-29 10:26:28 浏览: 84
好的,我可以回答您的问题。首先,您需要声明一个指向该地址的指针,如下所示: ```c char* ptr = (char*)0x20001000; ``` 然后,您可以将该指针所指向的值赋给已声明的变量char a,如下所示: ```c char a = *ptr; ``` 这将把指针ptr所指向的值赋值给a变量。请注意,这种方式只适用于已知地址的情况,通常不推荐使用,因为它可能会引起意想不到的错误或导致程序崩溃。
相关问题

如果你得到了输出666,那说明你运行这段代码的机器采用的是小端字节序,并且在这个机器上int类型的变量占用了4个字节。具体来说,变量a的值在内存中的储存形式可能如下所示: 复制 地址 | 值 --------|-------- 0x1000 | 0x9A 0x1001 | 0x0A 0x1002 | 0x06 0x1003 | 0x00 这里,变量a的值为0x00060A9A,按照小端字节序储存。将a的地址强制转换为char*类型后,程序会从a的地址开始输出字节序列,直到遇到'\0'字符为止。由于a的值中包含两个0x00字节,puts()函数会在输出a的值的同时,将后面的字节当作字符串结束符,因此输出结果为666。请注意,这种写法是不可靠的,因为它依赖于机器的内存布局和字节顺序,可能在不同的机器上产生不同的结果。详细解释你这段话

这段话主要是在说明一个关于计算机内存和字节序的问题。计算机内存是由一系列字节组成的,每个字节可以存储8个二进制位,也就是1个字节能够存储0~255之间的整数。而对于多字节的数据类型(如int、long等),在内存中的存储方式取决于机器的字节序。目前常见的字节序有两种:大端字节序和小端字节序。 在大端字节序中,多字节数据类型的高位字节存储在内存的低地址处,而低位字节存储在高地址处;而在小端字节序中,多字节数据类型的低位字节存储在内存的低地址处,而高位字节存储在高地址处。因此,在同样的内存中,不同的字节序会导致多字节数据类型的存储方式不同。 在这段话中,我们以小端字节序为例,考虑一个int类型变量a在内存中的存储方式。假设a的值为0x00060A9A,按照小端字节序储存,那么它在内存中的存储方式如下: | 地址 | 值 | |--------|-----------| | 0x1000 | 0x9A | | 0x1001 | 0x0A | | 0x1002 | 0x06 | | 0x1003 | 0x00 | 这里,变量a的值按照小端字节序储存,因此0x9A这个字节位于内存的低地址处,而0x00这个字节则位于内存的高地址处。 接下来,我们将a的地址强制转换为char*类型,也就是将一个int类型的指针转换为一个char类型的指针。由于char类型占用一个字节,因此char类型的指针在使用时会把内存中的每一个字节都当作一个字符来处理。 在这里,我们使用puts()函数输出a的值。puts()函数会从一个char类型的指针开始输出字节序列,直到遇到'\0'字符为止。由于a的值中包含两个0x00字节,因此在输出a的值时,puts()函数会将后面的字节当作字符串结束符,因此输出结果为666。 需要注意的是,这种写法是不可靠的,因为它依赖于机器的内存布局和字节顺序,可能在不同的机器上产生不同的结果。

int a = 0x12345678; char *p = (char *)&a; 为什么*p的值为0x78

在段代码中,我们将一个整型变量 `a` 的地址强制转换为一个字符指针 `p`。这意味着 `p` 指向了 `a` 的起始地址,并且我们可以通过 `*p` 来访问 `a` 的内存。 在小端机器上,多字节数据的最低有效字节存储在起始地址,而最高有效字节存储在结束地址。对于一个 32 位整型变量 `a`,其内存布局如下所示: ``` 高地址 --> 0x12 | 0x34 | 0x56 | 0x78 <-- 低地址 ``` 当我们通过 `*p` 访问 `a` 的内存时,由于 `p` 指向 `a` 的起始地址,所以 `*p` 的值为 `0x78`,即最低有效字节的值。 需要注意的是,这种结果是特定于小端机器的。在大端机器上,多字节数据的最高有效字节存储在起始地址,而最低有效字节存储在结束地址。因此,在大端机器上,`*p` 的值将为 `0x12`。
阅读全文

相关推荐

#include <reg52.h> unsigned char *p1,*p2,*p3,*p4,*p5; unsigned char k; sbit right = P0^0; sbit left = P0^1; unsigned char code table[]={0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f}; unsigned char code decode[][16]={ {0x00,0x00,0x00,0x06,0x06,0x0F,0x02,0x3F,0x0C,0x1E,0x3F,0x62,0xC0,0x00,0x00,0x00}, {0x00,0x00,0x00,0x6F,0xD9,0xFB,0x16,0xFE,0x26,0x66,0x64,0xD8,0xC0,0x00,0x00,0x00},/*"郑",0*/ {0x00,0x00,0x00,0x01,0x0F,0x03,0x00,0x1F,0x03,0x32,0x6C,0x18,0x63,0x00,0x00,0x00}, {0x00,0x00,0x00,0x84,0xFF,0x08,0x80,0xF8,0x1C,0x34,0x34,0x60,0xC0,0x00,0x00,0x00},/*"苏",1*/ {0x00,0x00,0x00,0x0F,0x00,0x0F,0x18,0x1E,0x37,0x31,0x29,0x7F,0x43,0x00,0x00,0x00}, {0x00,0x00,0x00,0xFF,0x60,0xFF,0xC3,0xF6,0xFE,0xAC,0xFC,0x18,0x70,0x00,0x00,0x00},/*"雨",2*/ {0x00,0x00,0x00,0x07,0x06,0x0F,0x0C,0x0F,0x00,0x7F,0x01,0x03,0x03,0x00,0x00,0x00}, {0x00,0x00,0x00,0xFF,0x03,0xFE,0x06,0xFC,0xC0,0xFE,0x80,0x00,0x00,0x00,0x00,0x00},/*"早",3*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x01,0x01,0x03,0x03,0xFF,0x00,0x00,0x00}, {0x00,0x00,0x00,0x60,0x60,0xE0,0xC0,0xFE,0x80,0x80,0x00,0x00,0xF8,0x00,0x00,0x00},/*"上",4*/ {0x00,0x00,0x00,0x03,0x06,0x1F,0x0D,0x1B,0x36,0x1C,0x1C,0x76,0xC1,0x00,0x00,0x00}, {0x00,0x00,0x00,0x1F,0x03,0x86,0x8C,0xFF,0x18,0x30,0x30,0x60,0xC0,0x00,0x00,0x00},/*"好",5*/ {0x00,0x00,0x00,0x00,0x0F,0x0B,0x1A,0x1F,0x35,0x2D,0x7A,0x63,0x04,0x00,0x00,0x00}, {0x00,0x00,0x00,0x18,0x7F,0xC6,0xFF,0xB2,0xFE,0x70,0xA6,0x64,0x78,0x00,0x00,0x00},/*"晚",6*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x01,0x01,0x03,0x03,0xFF,0x00,0x00,0x00}, {0x00,0x00,0x00,0x60,0x60,0xE0,0xC0,0xFE,0x80,0x80,0x00,0x00,0xF8,0x00,0x00,0x00},/*"上",7*/ {0x00,0x00,0x00,0x03,0x06,0x1F,0x0D,0x1B,0x36,0x1C,0x1C,0x76,0xC1,0x00,0x00,0x00}, {0x00,0x00,0x00,0x1F,0x03,0x86,0x8C,0xFF,0x18,0x30,0x30,0x60,0xC0,0x00,0x00,0x00},/*"好",8*/ }; void writetwochar(unsigned char,unsigned char,unsigned char,unsigned char,unsigned char); void delay(int); void main() { int originaladd,total; unsigned char i,j; originaladd=&decode[0][0]; total=sizeof(decode); p1=&decode[0][0]; p2=&decode[1][0]; p3=&decode[2][0]; p4=&decode[3][0]; p5=&decode[4][0]; while(1) { for(k=0;k<8;k++) { for(j=0;j<2;j++) { for(i=0;i<16;i++) { P2=table[i]; writetwochar(*(p5+i),*(p4+i),*(p3+i),*(p2+i),*(p1+i)); delay(10); } } } p1=p2;p2=p3;p3=p4;p4=p5;p5=p5+16; if(p5-originaladd==total) p5=&decode[0][0]; } }

最新推荐

recommend-type

基于C#调用c++Dll结构体数组指针的问题详解

网上有一大堆得转换对应表,也有一大堆的转换实例,但是都没有强调一个更重要的问题,就是C#数据类型和C++数据类型占内存长度的对应关系。 如果Dll文件中只包含一些基础类型,那这个问题可能可以被忽略,但是如果是...
recommend-type

数据挖掘(三)相关数据集资源

数据挖掘(三)相关数据集资源
recommend-type

《GNU_Linux环境高级编程》.pdf

《GNU_Linux环境高级编程》.pdf
recommend-type

C++ Qt影院票务系统源码发布,代码稳定,高分毕业设计首选

资源摘要信息:"基于C++和Qt的影院票务系统是一个实践性极强的软件开发项目,主要面向计算机相关专业领域的学生、老师和企业员工。该系统项目源码是作者个人的课程设计和毕业设计,经过严格测试和评审,平均得分高达96分,确保了代码的可用性和可靠性。 项目特点: 1. 使用C++作为主要开发语言,C++是一种高级编程语言,广泛应用于软件开发的各个领域,特别是在系统软件、游戏开发、高性能服务器和客户端开发中表现出色。 2. 应用了Qt框架,Qt是一个跨平台的应用程序和用户界面框架,基于C++编写,可用于开发图形用户界面应用程序,也可用于开发非GUI程序,如命令行工具和服务器。 项目功能: 该票务系统可能包含了以下功能: - 用户登录与管理,可以实现对用户信息的录入和查询。 - 影片信息管理,包括影片的新增、查询、修改和删除等功能。 - 座位管理,能够对影院座位进行分配、查询和维护。 - 票务处理,实现在线选座、购票、退票和支付等业务。 - 报表统计,可以统计票房收入、观影人次等数据。 技术应用: 1. C++编程语言:需要用户具备良好的C++基础,理解面向对象编程和STL等概念。 2. Qt框架:需要用户了解Qt的信号与槽机制、事件处理、界面设计等。 3. 数据库技术:系统可能使用了如SQLite、MySQL等数据库来存储数据,用户需要理解基本的数据库操作。 4. 网络编程:如果系统支持在线购票等功能,可能涉及到网络通信的知识。 开发环境和工具: 1. 开发环境:推荐使用Qt Creator作为主要开发环境,它提供了代码编辑、调试和构建等功能。 2. 编译器:项目需要支持C++标准的编译器,如GCC或者MSVC。 3. 版本控制:源码应该使用版本控制系统进行管理,如Git,便于代码的版本控制和团队协作。 项目备注: 1. 下载资源后,需要首先阅读README.md文件,以获取项目的安装和运行指南。 2. 项目适合初学者和有基础的开发者学习和进阶,也可以作为课程设计或毕业设计的参考。 3. 对于已经有一定基础的开发者,可以在现有代码的基础上进行修改和扩展,开发出新的功能,例如增加优惠活动、会员积分等。 4. 该资源仅供学习参考使用,不得用于商业目的。 在该资源文件的文件名称列表中,"ori_code_vip"可能指代的是含有'VIP'标识的原始代码文件夹或文件。该文件夹或文件可能包含了与VIP用户相关的票务处理逻辑、权限控制以及特殊服务等高级功能。"VIP"功能在影院票务系统中常常表示提供给高级会员用户的一系列优惠和服务,如优先选座、折扣购票、积分累计等。 该资源的下载和使用,能够帮助学习者深入理解C++和Qt框架在实际项目中的应用,以及软件开发流程中代码编写、测试、调试和文档编写的各个阶段。对于学生和初入职场的开发者来说,这样的项目资源是一个难得的学习机会,能够通过实践提高编程能力和系统分析设计能力。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【HDFS数据块管理揭秘】:掌握保障数据可靠性与一致性的关键

![【HDFS数据块管理揭秘】:掌握保障数据可靠性与一致性的关键](https://www.interviewbit.com/blog/wp-content/uploads/2022/06/HDFS-Architecture-1024x550.png) # 1. HDFS数据块管理概述 在大数据存储领域,Hadoop分布式文件系统(HDFS)作为核心组件,支撑起海量数据的存储与处理。本章将对HDFS中的数据块管理进行概述,为后续章节的深入探讨打下基础。 ## 1.1 HDFS数据块的概念 HDFS将大文件切分成一系列的块(block),每个块默认大小为128MB(可配置),是进行存储和计算
recommend-type

在水电站试运行过程中,如何进行1#机组和2#机组的发电机升流试验?请详细说明测试步骤和注意事项。

参考资源链接:[水电站1# & 2#机组启动试运行调试程序](https://wenku.csdn.net/doc/59h06rj5xn?utm_source=wenku_answer2doc_content) 升流试验是水电站试运行调试过程中的一项关键测试,目的是验证发电机在不同负载下的运行性能和稳定性。这项测试通常在机组启动试验之后进行,确保在升流过程中机组的电流、电压及功率因素等参数符合设计要求。 首先,确保所有电气设备已经按设计图纸和技术规范完成安装,并通过了必要的绝缘和耐压测试。在开始升流试验前,应当检查发电机的定子绕组、转子绕组及辅助系统是否正常,以及冷却系统是否准备就绪。
recommend-type

纯CSS3实现逼真火焰手提灯动画效果

资源摘要信息:"纯CSS3火焰手提灯动画特效" CSS3作为Web开发中的一种重要技术,它带来了诸多前端的创新和视觉效果。在这份资源中,我们主要关注的是如何利用CSS3的动画和样式特性来创建一个逼真的火焰手提灯动画特效。 1. CSS3动画 (CSS3 Animations) CSS3的动画功能允许开发者创建流畅且细腻的动画效果。在制作火焰手提灯动画时,通常会用到关键帧动画(@keyframes),这是定义动画序列的一种方式。开发者可以通过@keyframes来指定动画的起始状态和结束状态,甚至中间的各个阶段状态,使得动画过程可以更加精确地控制。 2. CSS3转换 (CSS3 Transitions) 除了CSS3动画,CSS3的转换属性(Transitions)也是创建动画效果的重要工具。转换属性能够实现元素状态变化时的平滑过渡效果。例如,火焰的颜色渐变、大小变化等,可以通过定义不同的转换效果来实现,使得整个动画过程更加自然。 3. CSS3阴影 (CSS3 Shadows) 和渐变 (CSS3 Gradients) 火焰手提灯动画特效的实现,离不开阴影和渐变效果的使用。CSS3提供了阴影(box-shadow、text-shadow)和线性渐变(linear-gradient)、径向渐变(radial-gradient)等高级样式。通过这些样式,可以模拟出火焰的立体感和动态变化效果。 4. CSS3滤镜 (CSS3 Filters) 滤镜属性可以用来对元素应用图形效果,比如模糊、亮度、对比度等。在火焰动画中,滤镜能够增加火焰的视觉效果,让火焰显得更加逼真和动态。例如,模糊滤镜可以让火焰边缘看起来更加朦胧,更加符合真实火焰燃烧的视觉效果。 5. 手提灯与火焰的构造 为了实现手提灯动画,我们需要构建一个合适的HTML结构,然后使用CSS3对其进行样式设计。手提灯本身可能是一个简单的div元素,通过CSS的border-radius属性来做出圆形效果。而火焰效果则可以通过多个div元素叠加,并用不同的颜色和透明度来模拟火焰的不同层次和光影效果。 6. 利用Sass或Less等CSS预处理器 虽然CSS3本身足够强大,但为了提高代码的可维护性和开发效率,通常会使用Sass、Less等CSS预处理器。它们允许使用变量、混入(mixin)、函数和嵌套规则等,有助于组织和简化复杂的样式代码,使得维护和修改火焰动画变得更容易。 总结而言,纯CSS3火焰手提灯动画特效的实现涉及了CSS3动画、转换、阴影、渐变和滤镜等关键技术和属性的综合运用。通过这些技术的灵活运用,可以设计出既美观又符合设计要求的火焰动画效果。这种特效在游戏、网页设计、广告和移动应用等许多场景中都有着广泛的应用。掌握这些知识点,对于任何希望提升其Web前端开发技能的开发者来说都是一项宝贵的财富。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Hadoop HDFS深度剖析】:揭秘NameNode与DataNode的高效交互技巧

![【Hadoop HDFS深度剖析】:揭秘NameNode与DataNode的高效交互技巧](https://d3i71xaburhd42.cloudfront.net/1d24dbc46cf6c9b3f8bc6436d368be3a507ebbaf/7-Figure4-1.png) # 1. HDFS概述与架构解析 Hadoop分布式文件系统(HDFS)作为大数据领域中广受欢迎的存储解决方案,提供了一种高度容错的方式来存储大规模数据集。在本章中,我们将深入了解HDFS的架构和设计哲学,并解析其核心组件如何协同工作来支撑大数据的存储与处理。 ## 1.1 HDFS的基本概念 HDFS采