基于深度学习的人脸年龄识别算法全部代码
时间: 2023-11-12 08:04:03 浏览: 93
以下是基于深度学习的人脸年龄识别算法的全部代码:
1. 导入必要的库
```
import cv2
import numpy as np
import os
import glob
from random import shuffle
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
```
2. 读取数据
```
def load_data():
data = []
labels = []
image_paths = glob.glob("data/*/*.jpg") # 图片路径
shuffle(image_paths) # 随机打乱顺序
for img_path in image_paths:
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (224, 224)) # 调整大小
label = int(img_path.split(os.path.sep)[-2]) # 标签为文件夹名称
data.append(img)
labels.append(label)
data = np.array(data, dtype="float32") / 255.0 # 归一化
labels = np.array(labels, dtype="int")
return data, labels
```
3. 构建模型
```
def build_model():
model = keras.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)),
layers.MaxPooling2D(2, 2),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D(2, 2),
layers.Conv2D(128, (3, 3), activation='relu'),
layers.MaxPooling2D(2, 2),
layers.Conv2D(128, (3, 3), activation='relu'),
layers.MaxPooling2D(2, 2),
layers.Flatten(),
layers.Dense(512, activation='relu'),
layers.Dense(1)
])
return model
```
4. 训练模型
```
def train(model, data, labels):
model.compile(optimizer='adam',
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=['accuracy'])
history = model.fit(data, labels, epochs=10, validation_split=0.2)
return model, history
```
5. 测试模型
```
def test(model, data, labels):
test_loss, test_acc = model.evaluate(data, labels, verbose=2)
print('\nTest accuracy:', test_acc)
```
6. 主函数
```
def main():
data, labels = load_data()
model = build_model()
model, history = train(model, data, labels)
test(model, data, labels)
if __name__ == '__main__':
main()
```
以上就是基于深度学习的人脸年龄识别算法的全部代码。需要注意的是,该代码仅提供了一个基本框架,具体实现可能需要根据实际情况进行调整和改进。
阅读全文