fsk调制解调的matlab

时间: 2023-10-31 17:31:00 浏览: 23
调制部分: 假设要调制的信号为x(t),调制信号为c(t),则FSK调制的公式为: s(t) = Ac*cos(2*pi*f1*t) (x(t) = 0) s(t) = Ac*cos(2*pi*f2*t) (x(t) = 1) 其中,f1和f2为两个不同的载频,Ac为调制幅度。 在MATLAB中可以通过以下代码实现FSK调制: % 设置信号参数 fs = 1000; % 采样率 T = 1/fs; % 采样间隔 t = 0:T:1-T; % 时间序列 f1 = 10; % 载频1 f2 = 20; % 载频2 Ac = 1; % 调制幅度 % 生成调制信号 x = randi([0,1],1,length(t)); % 生成随机二进制序列 c1 = Ac*cos(2*pi*f1*t); % 载频1信号 c2 = Ac*cos(2*pi*f2*t); % 载频2信号 s = zeros(1,length(t)); % 初始化调制信号 for i = 1:length(t) if x(i) == 0 s(i) = c1(i); else s(i) = c2(i); end end 解调部分: 假设接收到的调制信号为r(t),则FSK解调的公式为: r(t) = Ac*cos(2*pi*f1*t + phi) (x(t) = 0) r(t) = Ac*cos(2*pi*f2*t + phi) (x(t) = 1) 其中,phi为相位偏移量。 在MATLAB中可以通过以下代码实现FSK解调: % 解调信号 r = s.*cos(2*pi*f1*t); % 接收到的信号与载频1相乘 p1 = sum(r)/length(t); % 计算平均功率 r = s.*cos(2*pi*f2*t); % 接收到的信号与载频2相乘 p2 = sum(r)/length(t); % 计算平均功率 if p1 > p2 x_hat = zeros(1,length(x)); else x_hat = ones(1,length(x)); end 其中,x_hat为解调后的二进制序列。

相关推荐

最新推荐

基于MATLAB的2FSK调制及仿真.doc

基于MATLAB的2FSK调制及仿真本文通过分别用Matlab、Simulink、System view设计2FSK调制与解调的仿真,深入了解数字频率调制2FSK的基本原理,掌握用现代通信仿真技术对解调与调制的实现,深刻理解Matlab、Simulink...

MIL_STD_1364J.537.pdf

MIL_STD_1364J.537.pdf

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

hbase中时间戳的精确度和hbase中列族和列名的分隔符是什么

我已经回答了关于HBase中时间戳的精确度的问题,现在回答你的第二个问题: 在HBase中,列族和列名的分隔符是冒号(:)。例如,如果你有一个列族为“info”,列名为“name”的列,那么在HBase中的完整列名将是“info:name”。这个分隔符是在HBase的设计中被硬编码的,不能更改。这个分隔符在HBase的API中也得到了体现,例如在Java API中,可以使用“:`”来将列族和列名分隔开来,如下所示: ```java Get get = new Get(Bytes.toBytes("rowkey")); get.addColumn(Bytes.toBytes("info"),

spring boot应用启动原理分析.docx

spring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

粒子群多目标算法matlab代码【算法实现步骤】计算适应度函数

# 1. 粒子群多目标算法简介 ## 1.1 粒子群多目标算法概述 在多目标优化问题中,粒子群多目标算法是一种常用的元启发式优化算法。它借鉴了鸟群觅食的行为,通过不断调整粒子的位置和速度来搜索最优解空间。相比于传统的单目标优化算法,粒子群多目标算法能够有效解决多目标优化问题。 ## 1.2 算法原理与特点 粒子群多目标算法的核心原理是通过模拟群体中粒子的运动,不断更新粒子的位置和速度,以达到最优解。其特点包括易于实现、收敛速度快、对参数不敏感等。 ## 1.3 相关研究现状分析 目前,粒子群多目标算法在多目标优化领域得到了广泛应用,并在不同领域取得了一定的成果。研究者们也在不断探索

使用 Flask Web 框架来构建 Web 服务,提供 API 接口。

使用 Flask Web 框架来构建 Web 服务,提供 API 接口的步骤如下: 1. 安装 Flask 框架,可以使用 pip 工具进行安装:`pip install flask`。 2. 创建一个 Flask 应用,代码如下: ```python from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/predict', methods=['POST']) def predict(): # 接收客户端请求数据 data = request.get_json()

学生成绩管理系统(数据结构C语言版源代码).doc

学生成绩管理系统(数据结构C语言版源代码).doc