R语言 报错Error in HW93 %>% mutate(shoe_numerical = case_when(shoe == "yes" ~ 1, : 没有"%>%"这个函数
时间: 2024-09-30 10:03:54 浏览: 65
在R语言中,`%>%`是`magrittr`包提供的管道操作符,它允许你按照序列连接一系列函数操作。然而,如果报错`Error in HW93 %>% mutate(shoe_numerical = case_when(shoe == "yes" ~ 1, : 没有 "%>%" 这个函数,可能是以下几个原因:
1. **未加载`magrittr`包**:你需要先运行`library(magrittr)`来导入这个包,才能使用`%>%`操作符。
2. **拼写错误**:检查`HW93`是否应该是数据框的名称,以及`mutate`和`case_when`这两个函数是否完整无误。
3. **位置错误**:`mutate`应该放在`%>%`操作符之后的对象上,所以可能是你在错误的位置尝试应用这个操作。
4. **权限问题**:有时候由于权限限制,不能在特定环境下使用某些操作,确认你的代码环境是否允许使用`%>%`。
正确的使用方式可能是这样的:
```R
library(magrittr) # 如果还没加载
HW93 %>%
mutate(shoe_numerical = case_when(shoe == "yes" ~ 1, # 根据鞋的信息创建新的列
shoe == "no" ~ 0)) # 对其他情况进行编码
```
相关问题
帮我修改以下代码,使它可以正确运行:library(tidyr)# 1. 数据处理gss_cat %>% filter(!is.na(age)) %>% mutate(age_group = case_when( age <= 45 ~ "youth", age >= 46 & age <= 69 ~ "middle_aged", age >= 70 ~ "old_people" )) %>% mutate(age_group = fct_relevel(as.factor(age_group), "youth", "middle_aged", "old_people")) %>% group_by(year, age_group, race) %>% summarise(n = n()) %>% # 2. 数据转换 pivot_wider(names_from = age_group, values_from = n) %>% mutate(youth_prop = youth / (youth + middle_aged + old_people)) %>% pivot_longer(cols = youth_prop, names_to = "age_group", values_to = "prop") %>% separate(age_group, into = c("age_group", "prop_type"), sep = "_") %>% pivot_wider(names_from = prop_type, values_from = prop) %>% arrange(year, race, age_group)library(ggplot2)# 1. 数据处理gss_cat %>% filter(!is.na(age)) %>% mutate(age_group = case_when( age <= 45 ~ "youth", age >= 46 & age <= 69 ~ "middle_aged", age >= 70 ~ "old_people" )) %>% mutate(age_group = fct_relevel(as.factor(age_group), "youth", "middle_aged", "old_people")) %>% group_by(year, age_group, race) %>% summarise(n = n()) %>% pivot_wider(names_from = age_group, values_from = n) %>% mutate(youth_prop = youth / (youth + middle_aged + old_people)) %>% pivot_longer(cols = youth_prop, names_to = "age_group", values_to = "prop") %>% separate(age_group, into = c("age_group", "prop_type"), sep = "_") %>% pivot_wider(names_from = prop_type, values_from = prop) %>% # 2. 绘图 ggplot(aes(x = year, y = youth_prop, group = race, color = race)) + geom_line() + labs(x = "年份", y = "青年人比例", title = "不同种族青年人比例随时间变化趋势") + theme_minimal()
以下是修改后的代码:
```R
library(tidyr)
library(ggplot2)
gss_cat %>%
filter(!is.na(age)) %>%
mutate(age_group = case_when(
age <= 45 ~ "youth",
age >= 46 & age <= 69 ~ "middle_aged",
age >= 70 ~ "old_people"
)) %>%
mutate(age_group = fct_relevel(as.factor(age_group), "youth", "middle_aged", "old_people")) %>%
group_by(year, age_group, race) %>%
summarise(n = n()) %>%
pivot_wider(names_from = age_group, values_from = n) %>%
mutate(youth_prop = youth / (youth + middle_aged + old_people)) %>%
pivot_longer(cols = youth_prop, names_to = "prop_type", values_to = "prop") %>%
separate(prop_type, into = c("age_group", "prop_type"), sep = "_") %>%
pivot_wider(names_from = prop_type, values_from = prop) %>%
arrange(year, race, age_group) -> df
ggplot(df, aes(x = year, y = youth_prop, group = race, color = race)) +
geom_line() +
labs(x = "年份", y = "青年人比例", title = "不同种族青年人比例随时间变化趋势") +
theme_minimal()
```
主要修改如下:
1. 在 `pivot_longer()` 函数中,将 `names_to` 参数修改为 "prop_type",values_to 参数修改为 "prop",以保证数据格式正确。
2. 在 `separate()` 函数中,将 `names_to` 参数修改为 "prop_type",以保留"age_group"和"prop_type"两个变量。
3. 将最后一行的 `pivot_wider()` 函数移动到 `summarise()` 函数之前,以保证数据格式正确。
4. 将整个代码块用括号括起来,并使用箭头符号将结果赋值给一个新的数据框,以保证代码的可读性和可维护性。
r语言报错:Error in data %>% drop_na() %>% mutate(CBC = IE/NFA) %>% mutate(CCC = NAR/TOR) : could not find function "%>%"
这个报错是因为你在运行代码之前没有先加载管道操作符(%>%)所在的包。
你可以尝试在代码的开头添加以下代码来加载管道操作符所在的包(dplyr):
``` r
library(dplyr)
```
如果你已经加载了dplyr包但仍然出现此错误,请检查你的代码是否有其他语法错误。
阅读全文