args.cuda = True if torch.cuda.is_available() else False model_name = args.model_name classify_type = args.classify_type if args.embedding == 'random': embedding = 'random' else: embedding = 'word2vec' if model_name == 'FastText': from utils_fasttext import build_dataset, build_iterator, get_time_dif, makedirs else: from utils import build_dataset, build_iterator, get_time_dif, makedirs path_corpus = 'data/data_{}/'.format(dataname[5:]) # 公共文件 地址 path_output = 'result_{}/'.format(dataname) # 结果输出 logdir = "result_{}/log/{}/{}/{}/".format(dataname, classify_type, model_name,useType) # 结果输出 saved_dict = "result_{}/saved_dict/{}/{}/{}/".format(dataname, classify_type, model_name,useType) # 结果输出 embed_dir = "result_{}/embedding/{}/{}/{}/".format(dataname, classify_type, model_name,useTypes) # 结果输出 makedirs([logdir, saved_dict, embed_dir])
时间: 2024-02-14 17:30:17 浏览: 86
torch.cuda.is_available()返回False解决方案
5星 · 资源好评率100%
这段代码片段是根据命令行参数来进行一些设置和路径的初始化。
首先,根据 `torch.cuda.is_available()` 的返回值判断是否支持 GPU,并将结果赋给 `args.cuda` 变量,即如果支持 GPU,则 `args.cuda` 为 `True`,否则为 `False`。
然后,将 `args.model_name` 和 `args.classify_type` 的值分别赋给 `model_name` 和 `classify_type` 变量。
接下来,根据 `args.embedding` 的值来确定 `embedding` 的取值。如果 `args.embedding` 为 `'random'`,则将 `embedding` 设置为 `'random'`,否则设置为 `'word2vec'`。
然后,根据 `model_name` 的值判断是否使用 FastText 模型,并根据需要引入相应的工具模块。
接下来是一系列的路径设置:
- `path_corpus` 是存放数据文件的路径,根据 `dataname` 来确定。
- `path_output` 是结果输出的路径,根据 `dataname` 来确定。
- `logdir` 是日志文件存放的路径,包括了 `dataname`、`classify_type`、`model_name` 和 `useType`。
- `saved_dict` 是模型保存的路径,包括了 `dataname`、`classify_type`、`model_name` 和 `useType`。
- `embed_dir` 是嵌入向量文件保存的路径,包括了 `dataname`、`classify_type`、`model_name` 和 `useTypes`。
最后,通过调用 `makedirs()` 函数来创建这些路径所对应的文件夹。
这段代码的目的是根据命令行参数来进行一些设置和路径的初始化,以便后续的程序运行能够正确读取和保存相关的文件。
阅读全文