torch.nn.ConvTranspose2d上采样4倍的代码
时间: 2024-06-19 09:04:45 浏览: 223
torch.nn.ConvTranspose2d可以用来进行上采样操作,将输入的feature map扩大四倍,其代码如下:
```python
import torch.nn as nn
class Upsample(nn.Module):
def __init__(self, in_channels, out_channels):
super(Upsample, self).__init__()
self.conv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
```
该代码定义了一个名为Upsample的类,输入参数为in_channels和out_channels,分别表示输入和输出的feature map的通道数。在初始化函数中,使用ConvTranspose2d函数创建了一个上采样的卷积层,并加上了BatchNorm2d和ReLU激活函数。在forward函数中,将输入x经过卷积层、BatchNorm2d和ReLU激活函数,最后输出结果x。
阅读全文