import torch.nn as nn num_classes = 131 class FruitsClassificationModel(nn.Module): def __init__(self): super(FruitsClassificationModel, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=32), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer2 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=64), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer3 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=128), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.fc = nn.Linear(in_features=18432, out_features=num_classes)

时间: 2023-11-22 09:04:56 浏览: 279
这段代码定义了一个卷积神经网络模型,用于水果图片的分类任务。该模型包含三个卷积层和一个全连接层,其中每个卷积层后面都跟着一个BatchNorm层和ReLU激活函数,然后是一个最大池化层,用于下采样。最后通过一个全连接层将卷积层输出的feature map映射到类别上。其中,输入图片是3通道的,输出类别数为131个。
相关问题

import torch import torch.nn as nn import torch.nn.functional as F __all__ = ["LMD_Loss"] def lmd_criterion( logits_student, logits_teacher, target, T, major_labels, ): bs = logits_student.size(0) gt_mask = _get_gt_mask(logits_student, target) label_mask = torch.zeros_like(logits_student).scatter_(1, major_labels.repeat(bs, 1), 1).bool() pred_t = F.softmax(logits_teacher / T - 1000 * label_mask - 1000 * gt_mask, dim=1) pred_s = F.log_softmax(logits_student / T - 1000 * gt_mask, dim=1) return nn.KLDivLoss(reduction="batchmean")(pred_s, pred_t) * (T ** 2) def _get_gt_mask(logits, target): target = target.reshape(-1) mask = torch.zeros_like(logits).scatter_(1, target.unsqueeze(1), 1).bool() return mask class LMD_Loss(nn.Module): def __init__(self, num_classes=10, tau=1, beta=1): super(LMD_Loss, self).__init__() self.CE = nn.CrossEntropyLoss() self.MSE = nn.MSELoss() self.KLDiv = nn.KLDivLoss(reduction="batchmean") self.num_classes = num_classes self.tau = tau self.beta = beta def forward(self, logits, targets, dg_logits, major_labels): ce_loss = self.CE(logits, targets) lmd_loss = lmd_criterion(logits, dg_logits, targets, self.tau, major_labels) loss = ce_loss + self.beta * lmd_loss return loss逐句解释这个代码块的内容

<think>好的,我现在需要逐句解释用户提供的这个PyTorch代码块。首先,我要理解整个代码的结构和功能。看起来这是一个自定义的损失函数模块,可能用于知识蒸馏或者类似的任务,因为涉及到学生和教师的logits处理。 首先,用户导入了一些PyTorch模块,包括torch、torch.nn和torch.nn.functional。然后定义了一个__all__变量,包含"LMD_Loss",说明这个模块主要暴露的是LMD_Loss类。 接下来是lmd_criterion函数。这个函数接受学生和教师的logits、目标标签、温度参数T和major_labels。我需要仔细看里面的每一步操作。比如,bs是batch size,然后gt_mask是通过_get_gt_mask函数生成的,这个函数的作用应该是创建真实标签的掩码。然后label_mask是通过scatter_方法生成的,这里可能是在将major_labels的位置设置为1,生成一个布尔掩码。 然后,计算pred_t和pred_s的时候,使用了softmax和log_softmax,并且减去了1000乘以两个掩码,这可能是为了在softmax时将这些位置的值压制到接近零,因为减去一个大数会让指数运算结果趋近于零。之后返回的是KL散度损失乘以T的平方,这和知识蒸馏中的温度缩放有关。 接下来是_get_gt_mask函数,它利用scatter_方法根据target生成一个布尔掩码,标记真实类别的位罝。 然后是LMD_Loss类,继承自nn.Module。初始化方法中定义了交叉熵损失、MSE、KL散度损失,还有一些参数如num_classes、tau和beta。前向传播函数中,计算了CE损失和lmd_loss,然后将它们加权相加得到总损失。 现在要逐句解释每个部分,可能需要拆解每一行代码的作用,尤其是那些涉及到张量操作的地方,比如scatter_的使用,以及如何生成掩码。同时,要解释为什么在计算pred_t和pred_s时要减去那些掩码,这可能涉及到抑制某些类别的输出,比如避免真实标签和主要标签的影响。 需要注意的是,用户可能希望了解这个损失函数的设计目的,比如LMD代表什么,可能是什么的缩写,比如可能是Logit Margin Distillation之类的。不过代码中没有明确说明,可能需要根据实现推测。 在解释过程中,要确保术语准确,比如logits、softmax、KL散度等,同时要说明每个参数的作用,比如T是温度参数,用于调整蒸馏的平滑程度,beta是平衡两个损失项的权重。 可能遇到的难点在于解释scatter_方法的具体作用,以及生成的掩码如何影响后续的概率计算。需要详细说明这些步骤,确保用户能够理解每一步的张量变换。 最后,要整理整个解释过程,保持结构清晰,分步骤说明每个函数和类的作用,以及它们在整体损失计算中的角色。</think>我将逐段解释这个基于PyTorch实现的LMD损失函数代码: ```python import torch import torch.nn as nn import torch.nn.functional as F ``` - 导入PyTorch框架的核心模块 - `nn`模块包含神经网络层和损失函数 - `F`模块包含函数形式的神经网络操作 ```python __all__ = ["LMD_Loss"] ``` - 声明模块的公开接口,表示外部只能访问`LMD_Loss`类 --- ### 核心函数`lmd_criterion` ```python def lmd_criterion( logits_student, logits_teacher, target, T, major_labels, ): bs = logits_student.size(0) ``` - 定义LMD损失的核心计算函数 - 参数说明: - `logits_student`: 学生模型的原始输出(未归一化) - `logits_teacher`: 教师模型的原始输出 - `target`: 真实标签 - `T`: 温度系数,用于软化概率分布 - `major_labels`: 主类别标签(需要特殊处理的类别) ```python gt_mask = _get_gt_mask(logits_student, target) ``` - 调用`_get_gt_mask`生成真实标签掩码 - 生成形状与logits相同的布尔矩阵,仅在真实标签位置为True ```python label_mask = torch.zeros_like(logits_student).scatter_(1, major_labels.repeat(bs, 1), 1).bool() ``` - 创建主类别掩码: - 1. 创建全零矩阵,形状同logits - 2. 使用`scatter_`在`major_labels`指定位置填充1 - 3. 转换为布尔型掩码 ```python pred_t = F.softmax(logits_teacher / T - 1000 * label_mask - 1000 * gt_mask, dim=1) ``` - 计算教师模型的软化概率: - 1. 用温度系数T缩放logits - 2. 通过`-1000 * mask`在softmax前压制指定位置的概率值 - 3. 得到归一化的概率分布 ```python pred_s = F.log_softmax(logits_student / T - 1000 * gt_mask, dim=1) ``` - 计算学生模型的log概率: - 仅压制真实标签位置的数值 - 使用`log_softmax`为后续KL散度计算做准备 ```python return nn.KLDivLoss(reduction="batchmean")(pred_s, pred_t) * (T ** 2) ``` - 计算KL散度损失: - `batchmean`表示按batch维度求均值 - 乘以$T^2$恢复温度缩放对梯度的影响 --- ### 辅助函数`_get_gt_mask` ```python def _get_gt_mask(logits, target): target = target.reshape(-1) mask = torch.zeros_like(logits).scatter_(1, target.unsqueeze(1), 1).bool() return mask ``` - 生成真实标签的one-hot掩码: - `scatter_`在指定位置填入1 - 将数值矩阵转换为布尔型 --- ### LMD_Loss类 ```python class LMD_Loss(nn.Module): def __init__(self, num_classes=10, tau=1, beta=1): super(LMD_Loss, self).__init__() self.CE = nn.CrossEntropyLoss() self.MSE = nn.MSELoss() self.KLDiv = nn.KLDivLoss(reduction="batchmean") self.num_classes = num_classes self.tau = tau self.beta = beta ``` - 继承`nn.Module`实现自定义损失 - 初始化参数: - `tau`: 温度系数(对应函数参数T) - `beta`: 损失权重系数 - 预定义三种损失函数 ```python def forward(self, logits, targets, dg_logits, major_labels): ce_loss = self.CE(logits, targets) lmd_loss = lmd_criterion(logits, dg_logits, targets, self.tau, major_labels) loss = ce_loss + self.beta * lmd_loss return loss ``` - 前向计算流程: 1. 计算标准交叉熵损失 2. 计算LMD定制损失 3. 加权合并两个损失项 --- ### 算法特点 1. **双损失结合**:交叉熵保证基础分类性能,LMD损失实现知识蒸馏 2. **掩码机制**: - `gt_mask`保护真实标签不被压制 - `label_mask`处理特定主类别 3. **温度缩放**:通过温度系数T控制分布软化程度 4. **梯度修正**:$T^2$项抵消温度缩放对梯度的影响 该实现适用于需要同时保持原始分类性能并进行知识转移的场景,常见于模型压缩、对抗训练等应用。

import torch import torch.nn as nn import torch.nn.functional as F import torchvision.models as models import os class FCNTransformerNet(nn.Module): def __init__(self, num_classes): super(FCNTransformerNet, self).__init__() self.fcn_backbone = models.segmentation.fcn_resnet50(pretrained=True).backbone self.fcn_backbone.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.transformer_layers = nn.TransformerEncoderLayer(d_model=2048, nhead=8) self.transformer_encoder = nn.TransformerEncoder(self.transformer_layers, num_layers=6) self.classification_head = nn.Sequential( nn.Linear(2048, 512), nn.ReLU(), nn.Linear(512, num_classes) ) def forward(self, x): fcn_output = self.fcn_backbone(x)['out'] fcn_output = fcn_output.view(fcn_output.size(0), fcn_output.size(1), -1) fcn_output = fcn_output.permute(2, 0, 1) transformer_output = self.transformer_encoder(fcn_output) transformer_output = transformer_output.permute(1, 2, 0) transformer_output = transformer_output.contiguous().view(transformer_output.size(0), -1, 1, 1) output = self.classification_head(transformer_output) return output FCNTransformerNet net = FCNTransformerNet(num_classes=2) input_batch = torch.randn(4, 3, 512, 512) output_batch = net(input_batch) print(output_batch.size()) # Should print: torch.Size([4, 2, 512, 512]) 运行这段代码,并改错

在这段代码中,有几个问题需要进行修正。 首先,你定义了一个名为 `FCNTransformerNet` 的类,但是没有在代码末尾实例化这个类。你需要添加 `()` 来实例化该类,将其赋值给变量 `net`。 其次,你需要将 `FCNTransformerNet` 类的定义放在 `if __name__ == "__main__":` 条件语句内部,以确保它只在主程序中运行,而不是在模块导入时运行。 最后,你的代码中缺少了一些必要的导入语句。你需要导入 `torch`, `torch.nn` 和 `torchvision.models`。 下面是修改后的代码: ```python import torch import torch.nn as nn import torchvision.models as models class FCNTransformerNet(nn.Module): def __init__(self, num_classes): super(FCNTransformerNet, self).__init__() self.fcn_backbone = models.segmentation.fcn_resnet50(pretrained=True).backbone self.fcn_backbone.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.transformer_layers = nn.TransformerEncoderLayer(d_model=2048, nhead=8) self.transformer_encoder = nn.TransformerEncoder(self.transformer_layers, num_layers=6) self.classification_head = nn.Sequential( nn.Linear(2048, 512), nn.ReLU(), nn.Linear(512, num_classes) ) def forward(self, x): fcn_output = self.fcn_backbone(x)['out'] fcn_output = fcn_output.view(fcn_output.size(0), fcn_output.size(1), -1) fcn_output = fcn_output.permute(2, 0, 1) transformer_output = self.transformer_encoder(fcn_output) transformer_output = transformer_output.permute(1, 2, 0) transformer_output = transformer_output.contiguous().view(transformer_output.size(0), -1, 1, 1) output = self.classification_head(transformer_output) return output if __name__ == "__main__": net = FCNTransformerNet(num_classes=2) input_batch = torch.randn(4, 3, 512, 512) output_batch = net(input_batch) print(output_batch.size()) # Should print: torch.Size([4, 2, 512, 512]) ``` 请注意,这段代码假设你已经正确安装了 `torch` 和 `torchvision` 库。如果出现任何错误,你可能需要检查这些库的安装情况。
阅读全文

相关推荐

下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).__init__() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

import dgl import numpy as np import torch import torch.nn as nn import dgl.function as fn # 生成10个节点和15条边的图 g = dgl.rand_graph(10, 15) # 为每个节点随机生成一个特征向量 feat = np.random.rand(10, 5) # 为每条边随机生成一个特征向量 e_feat = np.random.rand(15, 3) # 将特征向量添加到图中 g.ndata['feat'] = torch.from_numpy(feat) g.edata['e_feat'] =torch.from_numpy(e_feat) # 随机给每个节点分配一个标签 labels = np.random.randint(0, 3, size=(10,)) g.ndata['label'] = torch.from_numpy(labels) class GraphSAGE(nn.Module): def __init__(self, in_feats, h_feats, num_classes): super(GraphSAGE, self).__init__() self.conv1 = dgl.nn.SAGEConv(in_feats, h_feats, 'mean') self.conv2 = dgl.nn.SAGEConv(h_feats, num_classes, 'mean') def forward(self, g, in_feat): h = self.conv1(g, in_feat) h = torch.relu(h) h = self.conv2(g, h) g.ndata['h'] = h hg = dgl.mean_nodes(g, 'h') return hg # 定义超参数 in_feats = 5 h_feats = 10 num_classes = 3 lr = 0.01 num_epochs = 20 # 创建模型和优化器 model = GraphSAGE(in_feats, h_feats, num_classes) optimizer = torch.optim.Adam(model.parameters(), lr=lr) # 训练模型 for epoch in range(num_epochs): logits = model(g, g.ndata['feat']) labels = g.ndata['label'] loss = nn.CrossEntropyLoss()(logits, labels) optimizer.zero_grad() loss.backward() optimizer.step() print('Epoch %d | Loss: %.4f' % (epoch, loss.item())) # 预测 model.eval() with torch.no_grad(): logits = model(g, g.ndata['feat']) pred = logits.argmax(1) print('Predicted labels:', pred) 报错:RuntimeError: expected scalar type Double but found Float

import torch import os import torch.nn as nn import torch.optim as optim import numpy as np import random class Net(nn.Module): def init(self): super(Net, self).init() self.conv1 = nn.Conv2d(1, 16, kernel_size=3,stride=1) self.pool = nn.MaxPool2d(kernel_size=2,stride=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=3,stride=1) self.fc1 = nn.Linear(32 * 9 * 9, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 32 * 9 * 9) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) folder_path = 'random_matrices2' # 创建空的tensor x = torch.empty((40, 1, 42, 42)) # 遍历文件夹内的文件,将每个矩阵转化为tensor并存储 for j in range(40): for j in range(40): file_name = 'matrix_{}.npy'.format(j) file_path = os.path.join(folder_path, file_name) matrix = np.load(file_path) x[j] = torch.from_numpy(matrix).unsqueeze(0) #y = torch.cat((torch.zeros(20), torch.ones(20))) y = torch.cat((torch.zeros(20, dtype=torch.long), torch.ones(20, dtype=torch.long))) for epoch in range(10): running_loss = 0.0 for i in range(40): inputs = x[i] labels = y[i].unsqueeze(0) labels = nn.functional.one_hot(labels, num_classes=2) optimizer.zero_grad() outputs = net(inputs) #loss = criterion(outputs, labels) loss = criterion(outputs.unsqueeze(0), labels.float()) loss.backward() optimizer.step() running_loss += loss.item() print('[%d] loss: %.3f' % (epoch + 1, running_loss / 40)) print('Finished Training') 报错:RuntimeError: expected scalar type Long but found Float,怎么修改?

class BasicBlock2D(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super(BasicBlock2D, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != self.expansion * out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * out_channels) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out # 定义二维ResNet-18模型 class ResNet18_2D(nn.Module): def __init__(self, num_classes=1000): super(ResNet18_2D, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1) self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2) self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2) self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 , 512) def _make_layer(self, block, out_channels, num_blocks, stride): layers = [] layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion for _ in range(1, num_blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) # print(out.shape) out = out.view(out.size(0), -1) out = self.fc(out) return out改为用稀疏表示替换全连接层

import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Bottleneck(nn.Module): def init(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).init() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes+dense_depth) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) x = self.shortcut(x) d = self.out_planes out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) out = F.relu(out) return out class DPN(nn.Module): def init(self, cfg): super(DPN, self).init() in_planes, out_planes = cfg['in_planes'], cfg['out_planes'] num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth'] self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.last_planes = 64 self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1) self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2) self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2) self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2) self.linear = nn.Linear(out_planes[3]+(num_blocks[3]+1)dense_depth[3], 10) def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride): strides = [stride] + 1 layers = [] for i,stride in (strides): layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0)) self.last_planes = out_planes + (i+2) * dense_depth return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DPN92(): cfg = { 'in_planes': (96,192,384,768), 'out_planes': (256,512,1024,2048), 'num_blocks': (3,4,20,3), 'dense_depth': (16,32,24,128) } return DPN(cfg)基于这个程序利用pytorch框架修改成图像检测与分类输出坐标、大小和种类

pptx
在智慧园区建设的浪潮中,一个集高效、安全、便捷于一体的综合解决方案正逐步成为现代园区管理的标配。这一方案旨在解决传统园区面临的智能化水平低、信息孤岛、管理手段落后等痛点,通过信息化平台与智能硬件的深度融合,为园区带来前所未有的变革。 首先,智慧园区综合解决方案以提升园区整体智能化水平为核心,打破了信息孤岛现象。通过构建统一的智能运营中心(IOC),采用1+N模式,即一个智能运营中心集成多个应用系统,实现了园区内各系统的互联互通与数据共享。IOC运营中心如同园区的“智慧大脑”,利用大数据可视化技术,将园区安防、机电设备运行、车辆通行、人员流动、能源能耗等关键信息实时呈现在拼接巨屏上,管理者可直观掌握园区运行状态,实现科学决策。这种“万物互联”的能力不仅消除了系统间的壁垒,还大幅提升了管理效率,让园区管理更加精细化、智能化。 更令人兴奋的是,该方案融入了诸多前沿科技,让智慧园区充满了未来感。例如,利用AI视频分析技术,智慧园区实现了对人脸、车辆、行为的智能识别与追踪,不仅极大提升了安防水平,还能为园区提供精准的人流分析、车辆管理等增值服务。同时,无人机巡查、巡逻机器人等智能设备的加入,让园区安全无死角,管理更轻松。特别是巡逻机器人,不仅能进行360度地面全天候巡检,还能自主绕障、充电,甚至具备火灾预警、空气质量检测等环境感知能力,成为了园区管理的得力助手。此外,通过构建高精度数字孪生系统,将园区现实场景与数字世界完美融合,管理者可借助VR/AR技术进行远程巡检、设备维护等操作,仿佛置身于一个虚拟与现实交织的智慧世界。 最值得关注的是,智慧园区综合解决方案还带来了显著的经济与社会效益。通过优化园区管理流程,实现降本增效。例如,智能库存管理、及时响应采购需求等举措,大幅减少了库存积压与浪费;而设备自动化与远程监控则降低了维修与人力成本。同时,借助大数据分析技术,园区可精准把握产业趋势,优化招商策略,提高入驻企业满意度与营收水平。此外,智慧园区的低碳节能设计,通过能源分析与精细化管理,实现了能耗的显著降低,为园区可持续发展奠定了坚实基础。总之,这一综合解决方案不仅让园区管理变得更加智慧、高效,更为入驻企业与员工带来了更加舒适、便捷的工作与生活环境,是未来园区建设的必然趋势。

大家在看

recommend-type

silvaco中文学习资料

silvaco中文资料。 希望对大家有帮助。。。。。。
recommend-type

AES128(CBC或者ECB)源码

AES128(CBC或者ECB)源码,在C语言环境下运行。
recommend-type

EMC VNX 5300使用安装

目录 1.通过IE登录储存 3 2.VNX5300管理界面 3 3.创建Raid Group 4 4.Raid Group 中储存LUN 7 5.注册服务器 9 6.创建 Storge Group 11
recommend-type

华为MA5671光猫使用 华为MA5671补全shell 101版本可以补全shell,安装后自动补全,亲测好用,需要的可以下载

华为MA5671光猫使用 华为MA5671补全shell 101版本可以补全shell,安装后自动补全,亲测好用,需要的可以下载,企业光猫稳定性还是可以
recommend-type

视频转换芯片 TP9950 iic 驱动代码

TP9950 芯片是一款功能丰富的视频解码芯片,具有以下特点和功能: 高清视频解码:支持多种高清模拟视频格式解码,如支持高清传输视频接口(HD-TVI)视频,还能兼容 CVI、AHD、TVI 和 CVBS 等格式,最高支持 1 路 1080p@30fps 的视频输入 。 多通道输入与输出: 支持 4 路视频接入,并可通过一路输出。 可以通过 CSI 接口输出,也可以通过并行的 BT656 接口输出。 图像信号处理:对一致性和性能进行了大量的数字信号处理,所有控制回路均可编程,以实现最大的灵活性。所有像素数据均根据 SMPTE-296M 和 SMPTE-274M 标准进行线锁定采样,并且具有可编程的图像控制功能,以达到最佳的视频质量 。 双向数据通信:与兼容的编码器或集成的 ISP 与 HD-TVI 编码器和主机控制器一起工作时,支持在同一电缆上进行双向数据通信 。 集成 MIPI CSI-2 发射机:符合 MIPI 的视频数据传输标准,可方便地与其他符合 MIPI 标准的设备进行连接和通信 。 TP9950 芯片主要应用于需要进行高清视频传输和处理的领域,例如汽车电子(如车载监控、行车

最新推荐

recommend-type

智慧园区3D可视化解决方案PPT(24页).pptx

在智慧园区建设的浪潮中,一个集高效、安全、便捷于一体的综合解决方案正逐步成为现代园区管理的标配。这一方案旨在解决传统园区面临的智能化水平低、信息孤岛、管理手段落后等痛点,通过信息化平台与智能硬件的深度融合,为园区带来前所未有的变革。 首先,智慧园区综合解决方案以提升园区整体智能化水平为核心,打破了信息孤岛现象。通过构建统一的智能运营中心(IOC),采用1+N模式,即一个智能运营中心集成多个应用系统,实现了园区内各系统的互联互通与数据共享。IOC运营中心如同园区的“智慧大脑”,利用大数据可视化技术,将园区安防、机电设备运行、车辆通行、人员流动、能源能耗等关键信息实时呈现在拼接巨屏上,管理者可直观掌握园区运行状态,实现科学决策。这种“万物互联”的能力不仅消除了系统间的壁垒,还大幅提升了管理效率,让园区管理更加精细化、智能化。 更令人兴奋的是,该方案融入了诸多前沿科技,让智慧园区充满了未来感。例如,利用AI视频分析技术,智慧园区实现了对人脸、车辆、行为的智能识别与追踪,不仅极大提升了安防水平,还能为园区提供精准的人流分析、车辆管理等增值服务。同时,无人机巡查、巡逻机器人等智能设备的加入,让园区安全无死角,管理更轻松。特别是巡逻机器人,不仅能进行360度地面全天候巡检,还能自主绕障、充电,甚至具备火灾预警、空气质量检测等环境感知能力,成为了园区管理的得力助手。此外,通过构建高精度数字孪生系统,将园区现实场景与数字世界完美融合,管理者可借助VR/AR技术进行远程巡检、设备维护等操作,仿佛置身于一个虚拟与现实交织的智慧世界。 最值得关注的是,智慧园区综合解决方案还带来了显著的经济与社会效益。通过优化园区管理流程,实现降本增效。例如,智能库存管理、及时响应采购需求等举措,大幅减少了库存积压与浪费;而设备自动化与远程监控则降低了维修与人力成本。同时,借助大数据分析技术,园区可精准把握产业趋势,优化招商策略,提高入驻企业满意度与营收水平。此外,智慧园区的低碳节能设计,通过能源分析与精细化管理,实现了能耗的显著降低,为园区可持续发展奠定了坚实基础。总之,这一综合解决方案不仅让园区管理变得更加智慧、高效,更为入驻企业与员工带来了更加舒适、便捷的工作与生活环境,是未来园区建设的必然趋势。
recommend-type

labelme标注的json转mask掩码图,用于分割数据集 批量转化,生成cityscapes格式的数据集

labelme标注的json转mask掩码图,用于分割数据集 批量转化,生成cityscapes格式的数据集
recommend-type

(参考GUI)MATLAB GUI漂浮物垃圾分类检测.zip

(参考GUI)MATLAB GUI漂浮物垃圾分类检测.zip
recommend-type

人脸识别_OpenCV_活体检测_证件照拍照_Demo_1741778955.zip

人脸识别项目源码实战
recommend-type

人脸识别_科大讯飞_Face_签到系统_Swface_1741770704.zip

人脸识别项目实战
recommend-type

掌握Android RecyclerView拖拽与滑动删除功能

知识点: 1. Android RecyclerView使用说明: RecyclerView是Android开发中经常使用到的一个视图组件,其主要作用是高效地展示大量数据,具有高度的灵活性和可配置性。与早期的ListView相比,RecyclerView支持更加复杂的界面布局,并且能够优化内存消耗和滚动性能。开发者可以对RecyclerView进行自定义配置,如添加头部和尾部视图,设置网格布局等。 2. RecyclerView的拖拽功能实现: RecyclerView通过集成ItemTouchHelper类来实现拖拽功能。ItemTouchHelper类是RecyclerView的辅助类,用于给RecyclerView添加拖拽和滑动交互的功能。开发者需要创建一个ItemTouchHelper的实例,并传入一个实现了ItemTouchHelper.Callback接口的类。在这个回调类中,可以定义拖拽滑动的方向、触发的时机、动作的动画以及事件的处理逻辑。 3. 编辑模式的设置: 编辑模式(也称为拖拽模式)的设置通常用于允许用户通过拖拽来重新排序列表中的项目。在RecyclerView中,可以通过设置Adapter的isItemViewSwipeEnabled和isLongPressDragEnabled方法来分别启用滑动和拖拽功能。在编辑模式下,用户可以长按或触摸列表项来实现拖拽,从而对列表进行重新排序。 4. 左右滑动删除的实现: RecyclerView的左右滑动删除功能同样利用ItemTouchHelper类来实现。通过定义Callback中的getMovementFlags方法,可以设置滑动方向,例如,设置左滑或右滑来触发删除操作。在onSwiped方法中编写处理删除的逻辑,比如从数据源中移除相应数据,并通知Adapter更新界面。 5. 移动动画的实现: 在拖拽或滑动操作完成后,往往需要为项目移动提供动画效果,以增强用户体验。在RecyclerView中,可以通过Adapter在数据变更前后调用notifyItemMoved方法来完成位置交换的动画。同样地,添加或删除数据项时,可以调用notifyItemInserted或notifyItemRemoved等方法,并通过自定义动画资源文件来实现丰富的动画效果。 6. 使用ItemTouchHelperDemo-master项目学习: ItemTouchHelperDemo-master是一个实践项目,用来演示如何实现RecyclerView的拖拽和滑动功能。开发者可以通过这个项目源代码来了解和学习如何在实际项目中应用上述知识点,掌握拖拽排序、滑动删除和动画效果的实现。通过观察项目文件和理解代码逻辑,可以更深刻地领会RecyclerView及其辅助类ItemTouchHelper的使用技巧。
recommend-type

【IBM HttpServer入门全攻略】:一步到位的安装与基础配置教程

# 摘要 本文详细介绍了IBM HttpServer的全面部署与管理过程,从系统需求分析和安装步骤开始,到基础配置与性能优化,再到安全策略与故障诊断,最后通过案例分析展示高级应用。文章旨在为系统管理员提供一套系统化的指南,以便快速掌握IBM HttpServer的安装、配置及维护技术。通过本文的学习,读者能有效地创建和管理站点,确保
recommend-type

[root@localhost~]#mount-tcifs-0username=administrator,password=hrb.123456//192.168.100.1/ygptData/home/win mount:/home/win:挂载点不存在

### CIFS挂载时提示挂载点不存在的解决方案 当尝试通过 `mount` 命令挂载CIFS共享目录时,如果遇到错误提示“挂载点不存在”,通常是因为目标路径尚未创建或者权限不足。以下是针对该问题的具体分析和解决方法: #### 创建挂载点 在执行挂载操作之前,需确认挂载的目标路径已经存在并具有适当的权限。可以使用以下命令来创建挂载点: ```bash mkdir -p /mnt/win_share ``` 上述命令会递归地创建 `/mnt/win_share` 路径[^1]。 #### 配置用户名和密码参数 为了成功连接到远程Windows共享资源,在 `-o` 参数中指定 `user
recommend-type

惠普8594E与IT8500系列电子负载使用教程

在详细解释给定文件中所涉及的知识点之前,需要先明确文档的主题内容。文档标题中提到了两个主要的仪器:惠普8594E频谱分析仪和IT8500系列电子负载。首先,我们将分别介绍这两个设备以及它们的主要用途和操作方式。 惠普8594E频谱分析仪是一款专业级的电子测试设备,通常被用于无线通信、射频工程和微波工程等领域。频谱分析仪能够对信号的频率和振幅进行精确的测量,使得工程师能够观察、分析和测量复杂信号的频谱内容。 频谱分析仪的功能主要包括: 1. 测量信号的频率特性,包括中心频率、带宽和频率稳定度。 2. 分析信号的谐波、杂散、调制特性和噪声特性。 3. 提供信号的时间域和频率域的转换分析。 4. 频率计数器功能,用于精确测量信号频率。 5. 进行邻信道功率比(ACPR)和发射功率的测量。 6. 提供多种输入和输出端口,以适应不同的测试需求。 频谱分析仪的操作通常需要用户具备一定的电子工程知识,对信号的基本概念和频谱分析的技术要求有所了解。 接下来是可编程电子负载,以IT8500系列为例。电子负载是用于测试和评估电源性能的设备,它模拟实际负载的电气特性来测试电源输出的电压和电流。电子负载可以设置为恒流、恒压、恒阻或恒功率工作模式,以测试不同条件下的电源表现。 电子负载的主要功能包括: 1. 模拟各种类型的负载,如电阻性、电感性及电容性负载。 2. 实现负载的动态变化,模拟电流的变化情况。 3. 进行短路测试,检查电源设备在过载条件下的保护功能。 4. 通过控制软件进行远程控制和自动测试。 5. 提供精确的电流和电压测量功能。 6. 通过GPIB、USB或LAN等接口与其他设备进行通信和数据交换。 使用电子负载时,工程师需要了解其操作程序、设置和编程方法,以及如何根据测试目的配置负载参数。 文档的描述部分提到了这些资料的专业性和下载人群的稀少。这可能暗示了这些设备的目标用户是具备一定专业知识的工程师和技术人员,因此文档内容将涵盖较为复杂的操作指南和技术细节。 标签中提到了“中文说明书”,表明这些文件是为中文用户提供方便而制作的,这对于不熟悉英语的技术人员来说是非常重要的。这有助于减少语言障碍,使得中文使用者能够更容易掌握这些专业的测试设备使用方法。 综上所述,惠普8594E频谱分析仪和IT8500系列电子负载都是测试设备领域中不可或缺的工具。掌握它们的使用方法和功能对于电子工程师来说是必需的。这些设备在维护和开发电子系统、电源设备以及无线通信设备中起着至关重要的作用。这份文档对于涉及相关领域的工作技术人员,特别是在中国环境下,提供了非常实用和必需的专业知识。
recommend-type

MATLAB与Python在SAR点目标仿真中的对决:哪种工具更胜一筹?

# 摘要 本文系统地探讨了SAR点目标仿真技术,重点分析了MATLAB和Python在这一领域的应用及其潜在价值。首先概述了SAR仿真概念和需求,然后详细介绍了MATLAB在SAR仿真中的功能、信号处理应用以及仿真实例。接着,文章转向Python,分析了其语言特点、生态系统