import torch import torch.nn as nn import torchvision.models as models class FCNTransformer(nn.Module): def __init__(self, num_classes): super(FCNTransformer, self).__init__() # Load pre-trained V16 model as FCN backbone vgg16 = models.vgg16(pretrained=True) features = list(vgg16.features.children()) self.backbone = nn.Sequential(*features) # FCN layers self.fcn_layers = nn.Sequential( nn.Conv2d(512, 4096, 7), nn.ReLU(inplace=True), nn.Dropout(), nn.Conv2d(4096, 4096, 1), nn.ReLU(inplace=True), nn.Dropout(), nn.Conv2d(4096, num_classes, 1) ) # Transformer layers self.transformer = nn.Transformer( d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1 ) def forward(self,x): # Backbone feature extraction features = self.backbone(x) # FCN layers fcn_out = self.fcn_layers(features) # Reshaping output for transformer input b, c, h, w = fcn_out.size() fcn_out = fcn_out.squeeze().view(c, b, -1).permute(2, 0, 1) # Reshaping for transformer input # Transformer encoding transformer_out = self.transformer.encode(fcn_out) # Reshaping output for segmentation prediction transformer_out = transformer_out.permute(1, 2, 0).view(b, c, h, w) return transformer_out if __name__ == '__main__': a = torch.randn(1, 3, 512, 512) model = FCNTransformer(num_classes=2) print(model(a).shape) 改进这段代码

时间: 2024-02-14 08:29:18 浏览: 235

这段代码看起来已经很完整了,但有一些改进可以提出。

首先,由于我们只需要使用 VGG16 的特征提取部分作为 FCN 的 backbone,而不需要其完整的网络结构,因此可以使用 vgg16.features 而不是 vgg16 来加载预训练模型。这样可以减少模型的参数量。

其次,为了更好地利用 GPU 的性能,可以将输入数据和模型移动到 GPU 上进行计算。可以使用 to() 方法将数据和模型移动到 GPU 上,如 model.to(device)a.to(device),其中 device 是你希望在其上运行代码的设备(如 'cuda')。

最后,你可以考虑添加一些必要的注释来解释代码的功能和每个部分的作用。这有助于其他人更好地理解你的代码。

下面是改进后的代码:

import torch
import torch.nn as nn
import torchvision.models as models


class FCNTransformer(nn.Module):
    def __init__(self, num_classes):
        super(FCNTransformer, self).__init__()

        # Load pre-trained V16 model as FCN backbone
        vgg16 = models.vgg16(pretrained=True)
        features = list(vgg16.features.children())

        self.backbone = nn.Sequential(*features)

        # FCN layers
        self.fcn_layers = nn.Sequential(
            nn.Conv2d(512, 4096, 7),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Conv2d(4096, 4096, 1),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Conv2d(4096, num_classes, 1)
        )

        # Transformer layers
        self.transformer = nn.Transformer(
            d_model=512,
            nhead=8,
            num_encoder_layers=6,
            num_decoder_layers=6,
            dim_feedforward=2048,
            dropout=0.1
        )

    def forward(self, x):
        # Backbone feature extraction
        features = self.backbone(x)

        # FCN layers
        fcn_out = self.fcn_layers(features)

        # Reshaping output for transformer input
        b, c, h, w = fcn_out.size()
        fcn_out = fcn_out.squeeze().view(c, b, -1).permute(2, 0, 1)  # Reshaping for transformer input

        # Transformer encoding
        transformer_out = self.transformer.encode(fcn_out)

        # Reshaping output for segmentation prediction
        transformer_out = transformer_out.permute(1, 2, 0).view(b, c, h, w)

        return transformer_out


if __name__ == '__main__':
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    a = torch.randn(1, 3, 512, 512).to(device)
    model = FCNTransformer(num_classes=2).to(device)
    print(model(a).shape)

这样,你的代码就更完善了,同时也考虑了在 GPU 上进行计算的情况。

向AI提问 loading 发送消息图标

相关推荐

from collections import OrderedDict import torch import torch.nn.functional as F import torchvision from torch import nn import models.vgg_ as models class BackboneBase_VGG(nn.Module): def __init__(self, backbone: nn.Module, num_channels: int, name: str, return_interm_layers: bool): super().__init__() features = list(backbone.features.children()) if return_interm_layers: if name == 'vgg16_bn': self.body1 = nn.Sequential(*features[:13]) self.body2 = nn.Sequential(*features[13:23]) self.body3 = nn.Sequential(*features[23:33]) self.body4 = nn.Sequential(*features[33:43]) else: self.body1 = nn.Sequential(*features[:9]) self.body2 = nn.Sequential(*features[9:16]) self.body3 = nn.Sequential(*features[16:23]) self.body4 = nn.Sequential(*features[23:30]) else: if name == 'vgg16_bn': self.body = nn.Sequential(*features[:44]) # 16x down-sample elif name == 'vgg16': self.body = nn.Sequential(*features[:30]) # 16x down-sample self.num_channels = num_channels self.return_interm_layers = return_interm_layers def forward(self, tensor_list): out = [] if self.return_interm_layers: xs = tensor_list for _, layer in enumerate([self.body1, self.body2, self.body3, self.body4]): xs = layer(xs) out.append(xs) else: xs = self.body(tensor_list) out.append(xs) return out class Backbone_VGG(BackboneBase_VGG): """ResNet backbone with frozen BatchNorm.""" def __init__(self, name: str, return_interm_layers: bool): if name == 'vgg16_bn': backbone = models.vgg16_bn(pretrained=True) elif name == 'vgg16': backbone = models.vgg16(pretrained=True) num_channels = 256 super().__init__(backbone, num_channels, name, return_interm_layers) def build_backbone(args): backbone = Backbone_VGG(args.backbone, True) return backbone if __name__ == '__main__': Backbone_VGG('vgg16', True)

更改import torch import torchvision.models as models import torch.nn as nn import torch.nn.functional as F class eca_Resnet50(nn.Module): def __init__(self): super().__init__() self.model = models.resnet50(pretrained=True) self.model.avgpool = nn.AdaptiveAvgPool2d((1,1)) self.model.fc = nn.Linear(2048, 1000) self.eca = ECA_Module(2048, 8) def forward(self, x): x = self.model.conv1(x) x = self.model.bn1(x) x = self.model.relu(x) x = self.model.maxpool(x) x = self.model.layer1(x) x = self.model.layer2(x) x = self.model.layer3(x) x = self.model.layer4(x) x = self.eca(x) x = self.model.avgpool(x) x = torch.flatten(x, 1) x = self.model.fc(x) return x class ECA_Module(nn.Module): def __init__(self, channel, k_size=3): super(ECA_Module, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x) y = self.conv(y.squeeze(-1).transpose(-1,-2)).transpose(-1,-2).unsqueeze(-1) y = self.sigmoid(y) return x * y.expand_as(x) class ImageDenoising(nn.Module): def __init__(self): super().__init__() self.model = eca_Resnet50() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(64, 3, kernel_size=3, stride=1, padding=1) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) return x输出为[16,1,50,50]

I want to compare TD3 with DDPG and DQN, give me the DQN code based on the following TD3 and DDPG codes: import torch import torch.nn as nn import torch.optim as optim import numpy as np device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Define the Actor network class Actor(nn.Module): def __init__(self, state_dim, action_dim, max_action): super(Actor, self).__init__() self.fc1 = nn.Linear(state_dim, 256) self.fc2 = nn.Linear(256, 256) self.fc3 = nn.Linear(256, action_dim) self.max_action = max_action def forward(self, state): x = torch.relu(self.fc1(state)) x = torch.relu(self.fc2(x)) return self.max_action * torch.tanh(self.fc3(x)) # Define the Critic network (TD3 uses two critics) class Critic(nn.Module): def __init__(self, state_dim, action_dim): super(Critic, self).__init__() self.fc1 = nn.Linear(state_dim + action_dim, 256) self.fc2 = nn.Linear(256, 256) self.fc3 = nn.Linear(256, 1) self.fc4 = nn.Linear(state_dim + action_dim, 256) self.fc5 = nn.Linear(256, 256) self.fc6 = nn.Linear(256, 1) def forward(self, state, action): x1 = torch.cat([state, action], 1) x1 = torch.relu(self.fc1(x1)) x1 = torch.relu(self.fc2(x1)) q1 = self.fc3(x1) x2 = torch.cat([state, action], 1) x2 = torch.relu(self.fc4(x2)) x2 = torch.relu(self.fc5(x2)) q2 = self.fc6(x2) return q1, q2 def Q1(self, state, action): x1 = torch.cat([state, action], 1) x1 = torch.relu(self.fc1(x1)) x1 = torch.relu(self.fc2(x1)) return self.fc3(x1) # TD3 Agent class TD3Agent: def __init__(self, state_dim, action_dim, max_action, gamma=0.99, tau=0.005, policy_noise=0.2, noise_clip=0.5, policy_delay=2): self.actor = Actor(state_dim, action_dim, max_action).to(device) self.actor_target = Actor(state_

import torch from torch import nn from torch.utils.tensorboard import SummaryWriter class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() self.model1 = nn.Sequential( nn.Flatten(), nn.Linear(3072, 100), nn.ReLU(), nn.Linear(100, 1), nn.Sigmoid() ) def forward(self, x): x = self.model1(x) return x import torch import torchvision from PIL.Image import Image from torch.utils.tensorboard import SummaryWriter from torch import nn, optim from torch.utils.data import dataloader from torchvision.transforms import transforms from module import MyModule train = torchvision.datasets.CIFAR10(root="../data",train=True, download=True, transform= transforms.ToTensor()) vgg_model = torchvision.models.vgg16(pretrained=True) vgg_model.classifier.add_module('add_linear', nn.Linear(1000,2)) #ToImage = transforms.ToPILImage() #Image.show(ToImage(train[0][0])) train_data = dataloader.DataLoader(train, batch_size = 128, shuffle=True) model = MyModule() #criterion = nn.BCELoss() epochs = 5 learningRate = 1e-3 optimizer = optim.SGD(model.parameters(),lr = learningRate) loss = nn.CrossEntropyLoss() Writer = SummaryWriter(log_dir="Training") step = 0 for epoch in range(epochs): total_loss = 0 for data,labels in train_data: y = vgg_model(data) los = loss(y,labels) optimizer.zero_grad() los.backward() optimizer.step() Writer.add_scalar("Training",los,step) step = step + 1 if step%100 == 0: print("Training for {0} times".format(step)) total_loss += los print("total_loss is {0}".format(los)) Writer.close() torch.save(vgg_model,"model_vgg.pth")修改变成VGG16-两分类模型

import torch import torch.nn as nn import librosa import numpy as np from torch.utils.data import Dataset , DataLoader from nemo.collections.tts.models import Tacotron2Model from nemo.collections.tts.models import WaveGlowModel import os # 配置参数 config = { "sr": 22050 , # 采样率 "batch_size": 8 , # 根据显存调整 "num_epochs": 500 , "gpu_id": 0 , "mel_dim": 80 , # 梅尔频谱维度 "text_embed_dim": 512 , # 文本编码维度 "max_text_len": 100 # 最大文本长度 } # 自定义数据集 class VoiceDataset(Dataset): def __init__(self , data_dir): self.files = [os.path.join(data_dir , f) for f in os.listdir(data_dir)] def __len__(self): return len(self.files) def __getitem__(self , idx): # 加载音频并转换为梅尔频谱 audio , sr = librosa.load(self.files[idx] , sr = config['sr']) mel = librosa.feature.melspectrogram( y = audio , sr = sr , n_mels = config['mel_dim']) mel = librosa.power_to_db(mel) # 生成随机文本嵌入(实际应使用真实文本) text_embed = torch.randn(config['text_embed_dim']) return { "mel": torch.FloatTensor(mel.T) , # (time, n_mels) "text": text_embed } # 初始化模型 device = torch.device(f"cuda:{config['gpu_id']}") class VoiceGenerator(nn.Module): def __init__(self): super().__init__() # 文本编码器 self.text_encoder = nn.Sequential( nn.Linear(config['text_embed_dim'] , 256) , nn.ReLU() , nn.Linear(256 , 512) ) # 声学模型(基于Tacotron2简化版) self.tacotron = Tacotron2Model.from_pretrained("tts_en_tacotron2").encoder # 声码器(基于WaveGlow简化版) self.vocoder = WaveGlowModel.from_pretrained("tts_waveglow_88m").generator def forward(self , text): # 文本编码 text_feat = self.text_encoder(text) # 生成梅尔频谱 mel_outputs , _ = self.tacotron(text_feat) # 生成波形 audio = self.vocoder(mel_outputs) return audio # 初始化系统 model = VoiceGenerator().to(device) optimizer = torch.optim.AdamW(model.parameters() , lr = 3e-4) criterion = nn.MSELoss() # 数据加载 dataset = VoiceDataset("training_data/sliced_audio") loader = DataLoader(dataset , batch_size = config['batch_size'] , shuffle = True) # 训练循环 for epoch in range(config['num_epochs']): for batch in loader: mels = batch['mel'].to(device) texts = batch['text'].to(device) # 前向传播 gen_audio = model(texts) # 计算损失 loss = criterion(gen_audio , mels) # 反向传播 optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters() , 1.0) optimizer.step() # 保存检查点 if epoch % 50 == 0: torch.save(model.state_dict() , f"voice_model_epoch{epoch}.pt") print(f"Epoch {epoch} | Loss: {loss.item():.4f}") 请检查上述代码,并分析错误所在,然后将修改后的代码完整返回给我,并说明每一步的意义

import torch import torch.nn as nn from skimage.segmentation import chan_vese import numpy as np from torch.nn import Conv2d from torchvision.ops import FeaturePyramidNetwork from torchvision.models import resnet50 import os os.environ['KMP_DUPLICATE_LIB_OK']='TRUE' class ImageSegmentationModel(nn.Module): def __init__(self): super(ImageSegmentationModel,self).__init__() self.conv_layers = nn.Sequential( nn.Conv2d(1,128,kernel_size=3,stride=2), nn.MaxPool2d(kernel_size=3,stride=2), nn.ReLU(), nn.Conv2d(128,64, kernel_size=3, stride=2), nn.MaxPool2d(kernel_size=3, stride=2), nn.ReLU(), nn.Conv2d(64,32,kernel_size=3,stride=2), nn.MaxPool2d(kernel_size=3,stride=2), nn.ReLU(), nn.Conv2d(32,16,kernel_size=3,stride=2) ) #使用resnet作为特征提取器 self.resnet = resnet50(pretrained=True) self.initial_layer = nn.Sequential( self.resnet.conv1, # 输出通道64 self.resnet.bn1, self.resnet.relu, self.resnet.maxpool # 输出通道64 ) self.layer1 = self.resnet.layer1 # 输出256通道 self.layer2 = self.resnet.layer2 # 输出512通道 self.layer3 = self.resnet.layer3 # 输出1024通道 self.layer4 = self.resnet.layer4 # 输出2048通道 #修改,调整fpn输入通道 self.fpn = FeaturePyramidNetwork([256,512,1024,2048],256) self.conv_layers11 = nn.Conv2d(256,1,kernel_size=1,stride=1) self.final_conv = nn.Conv2d(16,21,kernel_size=1,stride=1) self.softmax = nn.Softmax(dim=1) def preprocess(self,x): #将输入图像尺寸调整为511×511,使用双线性插值法 x = torch.nn.functional.interpolate(x,size=(511,511),mode='bilinear',align_corners=False) #将输入图像转换为灰度图像,通过对通道维度求均值 x = torch.mean(x,dim=1,keepdim=True) x_np = x.detach().cpu().numpy() segmented = [] for i in range(x_np.shape[0]): img = x_np[i,0] #init =np.array([[img.shape[1]-1,0],[img.shape[1]-1,img.shape[0]-1],[0,img.shape[0]-1,],[0,0]]) snake = chan_vese(img,mu=0.25, lambda1=1.0, lambda2=1.0, tol=0.001, max_num_iter=500, dt=0.5) seg = np.zeros_like(img) from skimage.draw import polygon rr, cc = polygon(snake[:,1],snake[:,0],seg.shape) seg[rr, cc] = 1 segmented.append(seg) segmented = np.array(segmented) segmented = torch.from_numpy(segmented).unsqueeze(1).float().to(x.device) return segmented def forward(self,x): y = torch.nn.functional.interpolate(x,size=(511,511),mode='bilinear',align_corners=False) x = self.preprocess(x) conv_output = self.conv_layers(x) conv_output[0,:,:,:] = 16 print("conv_output:", conv_output.shape) z = self.initial_layer(y) c1 = self.layer1(z) # [batch,256,H,W] c2 = self.layer2(c1) # [batch,512,H,W] c3 = self.layer3(c2) # [batch,1024,H,W] c4 = self.layer4(c3) # [batch,2048,H,W] fpn_input = { 'feat1': c1, 'feat2': c2, 'feat3': c3, 'feat4': c4 } fpn_output = self.fpn(fpn_input) fpn_output_upsampled = torch.nn.functional.interpolate(fpn_output['feat1'], size=(511, 511), mode='bilinear', align_corners=False) final_output = nn.functional.conv2d(fpn_output_upsampled,conv_output,stride=1,padding=1,groups=16) final_output = self.final_conv(final_output) final_output = self.softmax(final_output) return final_output目前conv_outputshape为[batch_size=64,16,3,3],我想让这之后的conv_output变为4个shape为[16,16,3,3]进行之后的操作

import torch import torch.nn as nn from skimage.segmentation import active_contour import numpy as np from torchvision.ops import FeaturePyramidNetwork from torchvision.models import resnet50 import os os.environ['KMP_DUPLICATE_LIB_OK']='TRUE' class ImageSegmentationModel(nn.Module): def __init__(self): super(ImageSegmentationModel,self).__init__() self.conv_layers = nn.Sequential( nn.Conv2d(1,1,kernel_size=3,stride=2), nn.MaxPool2d(kernel_size=3,stride=2), nn.ReLU(), nn.Conv2d(1, 1, kernel_size=3, stride=2), nn.MaxPool2d(kernel_size=3, stride=2), nn.ReLU(),nn.Conv2d(1,1,kernel_size=3,stride=2), nn.MaxPool2d(kernel_size=3,stride=2), nn.ReLU(), nn.Conv2d(1,1,kernel_size=3,stride=2) ) #使用resnet作为特征提取器 self.resnet = resnet50(pretrained=True) #移除resnet最后一层全连接层 self.resnet = nn.Sequential(*list(self.resnet.children())[:-2]) #修改,调整fpn输入通道 self.fpn = FeaturePyramidNetwork([256,512,1024,2048],256) def preprocess(self,x): #将输入图像尺寸调整为511×511,使用双线性插值法 x = torch.nn.functional.interpolate(x,size=(511,511),mode='bilinear',align_corners=False) #将输入图像转换为灰度图像,通过对通道维度求均值 x = torch.mean(x,dim=1,keepdim=True) #将张量转换为numpy数组,以便使用skimage库进行处理 x_np = x.detach().cpu().numpy() segmented = [] #对每个样本进行chan—vese分割 for i in range(x_np.shape[0]): img = x_np[i,0] #初始化活动轮廓的点 init =np.array([[img.shape[1]-1,0],[img.shape[1]-1,img.shape[0]-1],[0,img.shape[0]-1,],[0,0]]) #使用c-v函数进行分割 snake = active_contour(img,init,alpha=0.015,beta=10,gamma=0.001) #初始化分割结果矩阵 seg = np.zeros_like(img) from skimage.draw import polygon #绘制多边形区域(有无绘制必要?) rr, cc = polygon(snake[:,1],snake[:,0],seg.shape) #将多边形区域标记为1 seg[rr, cc] = 1 segmented.append(seg) #将分割结果转换为numpy数组 segmented = np.array(segmented) #将数组转换为张量,并添加通道维度 segmented = torch.from_numpy(segmented).unsqueeze(1).float().to(x.device) return segmented def forward(self,x): y = torch.nn.functional.interpolate(x,size=(511,511),mode='bilinear',align_corners=False) #对输入图像进行预处理 x = self.preprocess(x) #通过卷积层序列进行特征提取 conv_output = self.conv_layers(x) #通过resnet50提取特征 resnet_features = self.resnet(y) #构建fpn输入特征字典 fpn_input = { 'feat1': resnet_features[0], 'feat2': resnet_features[1], 'feat3': resnet_features[2], 'feat4': resnet_features[3] } #通过fpn网络 fpn_output = self.fpn(fpn_input) #最终卷积操作 fpn_output_upsampled = torch.nn.functional.interpolate(fpn_output['feat1'], size=(511, 511), mode='bilinear', align_corners=False) final_output = nn.functional.conv2d(fpn_output_upsampled,conv_output,stride=1,paddong=0) return final_output运行上述代码时发生报错:RuntimeError: Given groups=1, weight of size [256, 1024, 1, 1], expected input[1, 2048, 16, 16] to have 1024 channels, but got 2048 channels instead。该怎么解决?

#!/usr/bin/env python # coding: utf-8 from __future__ import absolute_import, division, print_function import json import multiprocessing import os import click import joblib import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from omegaconf import OmegaConf from PIL import Image from torch.utils.tensorboard import SummaryWriter from torchnet.meter import MovingAverageValueMeter from tqdm import tqdm from libs.datasets import get_dataset from libs.models import DeepLabV2_ResNet101_MSC from libs.utils import DenseCRF, PolynomialLR, scores palette = [0,0,0, 128,0,0, 0,128,0, 128,128,0, 0,0,128, 128,0,128, 0,128,128, 128,128,128, 64,0,0, 192,0,0, 64,128,0, 192,128,0, 64,0,128, 192,0,128, 64,128,128, 192,128,128, 0,64,0, 128,64,0, 0,192,0, 128,192,0, 0,64,128, 128,64,128, 0,192,128, 128,192,128, 64,64,0, 192,64,0, 64,192,0, 192,192,0] def makedirs(dirs): if not os.path.exists(dirs): os.makedirs(dirs) def get_device(cuda): cuda = cuda and torch.cuda.is_available() device = torch.device("cuda:0" if cuda else "cpu") if cuda: print("Device:") for i in range(torch.cuda.device_count()): print(" {}:".format(i), torch.cuda.get_device_name(i)) else: print("Device: CPU") return device def get_params(model, key): # For Dilated FCN if key == "1x": for m in model.named_modules(): if "layer" in m[0]: if isinstance(m[1], nn.Conv2d): for p in m[1].parameters(): yield p # For conv weight in the ASPP module if key == "10x": for m in model.named_modules(): if "aspp" in m[0]: if isinstance(m[1], nn.Conv2d): yield m[1].weight # For conv bias in the ASPP module if key == "20x": for m in model.named_modules(): if "aspp" in m[0]: if isinstan

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

将下列生成器改造成能够匹配edge-connect中的InpaintingModel的预训练模型键值的结构:class Generator(nn.Module): def init(self): super(Generator, self).init() self.encoder = nn.Sequential( nn.Conv2d(3, 64, 3, stride=2, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.Conv2d(64, 128, 3, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.Conv2d(128, 256, 3, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.Conv2d(256, 512, 3, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.Conv2d(512, 4000, 1), nn.BatchNorm2d(4000), nn.LeakyReLU(0.2) ) self.decoder = nn.Sequential( nn.ConvTranspose2d(4000, 512, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.ConvTranspose2d(512, 256, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.ConvTranspose2d(256, 128, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.ConvTranspose2d(64, 3, 3, stride=1, padding=1), nn.Tanh() ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x 另外修复部分代码定义为:mask = cv.inRange(img, (0, 0, 0), (1, 1, 1)) # 转换为张量 image_tensor = transforms.ToTensor()(img) mask_tensor = transforms.ToTensor()(mask) # 扩展维度 image_tensor = image_tensor.unsqueeze(0) mask_tensor = mask_tensor.unsqueeze(0) generator = Generator() load_edgeconnect_weights(generator, 'E:/fin/models/gen.pth') image_tensor = image_tensor.cuda() mask_tensor = mask_tensor.cuda() generator = generator.cuda() with torch.no_grad(): output_tensor = generator(image_tensor, mask_tensor)

大家在看

recommend-type

库卡镜像备份工具U盘制作

包含:U盘修改工具 及 库卡备份工具镜像 1、修改U盘数据 2、使用数据恢复软件恢复工具镜像至U盘 3、打开U盘打开工具设置参数 4、机器人断电插上U盘重新开机即可进入镜像备份 5、备份完成后机器人处于关机状态 注:并非所有U盘都可以完成上面的操作,如果一个U盘不行可以多试几个U盘。
recommend-type

traffic.zip

opencv 红绿灯识别 运动物体识别,基于OpenCV的红绿灯识别系统,能通过图像识别裁剪出图片中的红绿灯状态。
recommend-type

IEEE_Std_1588-2008

IEEE-STD-1588-2008 标准文档(英文版),里面有关PTP profile关于1588-2008的各种定义
recommend-type

owi-slave:AVR单线从机

owi 奴隶 在没有外部时钟的 ATTiny 2313A 上实现单线接口从设备。 目前,代码使用一个busyloop 来计算时间。 因此它不适合总线供电的应用并且需要电源。 不要使用主电源——它可能与 1-Wire 总线的接地电平不同。 建造 在 main.S 中设置所需的单线地址。 然后运行 make && sudo make flash 支持的功能 读 ROM (0x33) 工作良好。 成功测试: DS2482-100 单通道 1-Wire 主机 IBL USB iButton 读卡器 搜索 ROM (0xf0) main.c 中的代码适用于单设备总线,main.S 中的代码尚未测试。 多设备总线上的 SEARCH ROM 不起作用。 成功测试: DS2482-100 单通道 1-Wire 主机 去做 测试搜索ROM 在 SEARCH ROM 中实现主方向位的读出
recommend-type

TI C2000 DSP反汇编工具源程序.zip

自己用C语言写的用于TI C2000系列DSP 反汇编的源代码,可以做为学习之用。

最新推荐

recommend-type

在C++中加载TorchScript模型的方法

self.weight = torch.nn.Parameter(torch.rand(N, M)) @torch.jit.script_method def forward(self, input): if input.sum() > 0: output = self.weight.mv(input) else: output = self.weight + input ...
recommend-type

北京交通大学 901 软件工程 2020 年真题.pdf

北京交通大学 901 软件工程 2020 年真题.pdf
recommend-type

《基于YOLOv8的3D打印缺陷检测系统》(包含源码、完整数据集、可视化界面、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
recommend-type

中文版wordnet:分词SEO利器的使用体验与分享

中文版WordNet是一个基于语义的自然语言处理资源,它在功能上与英文的WordNet类似,是一种多语言的词库,主要用来进行语义分析、信息检索、文本理解等任务。它为自然语言中的词汇提供了层次化的概念和关系,包括同义词集(synsets)、同义词关系、上下位词关系以及词汇的词性标注等信息。 首先,WordNet将词汇按照概念进行了组织,每个概念被称为一个同义词集,同义词集内部的词汇具有相同或相近的意义。例如,在中文版WordNet中,“汽车”、“轿车”、“机动车”可能都属于同一个同义词集,因为它们在某些上下文中可以互换使用。 其次,中文版WordNet还包含了一系列的词汇关系。这些关系在不同的同义词集之间建立了联系,对理解词义及其上下文环境至关重要。这些关系主要分为以下几种: 1. 上位词(Hypernyms)和下位词(Hyponyms):上位词指一个更一般的概念,下位词指一个更具体的概念。例如,“车辆”是“汽车”和“摩托车”的上位词,“轿车”和“SUV”则是“汽车”的下位词。 2. 同义词(Synonyms):具有相同或相近意义的词汇。 3. 反义词(Antonyms):意义相对的词汇。 4. 整体和部分(Meronymy)关系:表示整体与部分的关系,比如“汽车”是“车轮”的整体,而“车轮”是“汽车”的部分。 5. 事物及其属性(Attribute)关系:表示事物与其属性的关系,如“颜色”是“汽车”的属性。 WordNet作为一个语言资源,对于中文分词、SEO(搜索引擎优化)等领域非常重要。中文分词是将连续的文本切分成有意义的词语序列的过程,在中文信息处理中非常关键。WordNet可以为分词提供上下文理解,帮助区分多义词和确定正确的词汇意义。 在SEO方面,中文版WordNet可以用于关键词的选择和优化。由于WordNet提供了详尽的词汇语义关系,SEO专家可以利用这些信息找到相关性高的关键词,从而提高搜索引擎中网页的排名。 从描述中可知,用户提到他们下载的是只有32个表的版本,这表明他们可能下载的并不是完整的中文WordNet资源。完整的中文版WordNet包含大量的同义词集和词汇间关系,能够提供丰富的语义信息用于自然语言处理任务。 标签“分词”、“SEO”和“wordnet”共同指向了WordNet在自然语言处理和搜索引擎优化中的实际应用价值,其中“分词”直接关联到中文文本处理的基础技术,而“SEO”则强调了WordNet在提升网站可见性和关键词策略中的应用。 总结而言,中文版WordNet是一个宝贵的语义资源,它为理解和处理中文自然语言提供了强大的支持。它通过组织词汇概念和关系的方式,极大地促进了中文分词技术的发展,并为SEO提供了语义层面的优化方案。对于从事中文信息处理、自然语言理解和Web内容优化的专业人士来说,中文版WordNet是一个不可或缺的工具。
recommend-type

【精准测试】:确保分层数据流图准确性的完整测试方法

# 摘要 分层数据流图(DFD)作为软件工程中描述系统功能和数据流动的重要工具,其测试方法论的完善是确保系统稳定性的关键。本文系统性地介绍了分层DFD的基础知识、测试策略与实践、自动化与优化方法,以及实际案例分析。文章详细阐述了测试的理论基础,包括定义、目的、分类和方法,并深入探讨了静态与动态测试方法以及测试用
recommend-type

process::self

### 关于 `process::self` 的用法或含义 #### 在 Rust 中的定义与用法 在 Rust 编程语言中,`std::process::id()` 是用于获取当前进程 ID (PID) 的函数[^4]。需要注意的是,在标准库中并没有直接名为 `process::self` 的 API;然而,Rust 提供了通过模块 `std::process` 来操作进程的功能。如果提到 `process::self`,可能是某些特定上下文中对当前运行进程的一种抽象表示。 以下是使用 `std::process::id()` 获取当前进程 ID 的示例代码: ```rust use
recommend-type

智能家居远程监控系统开源解决方案

智能家居远程监控系统是一种利用现代信息技术、网络通信技术和自动化控制技术,实现对家居环境的远程监测和控制的系统。这种系统让用户可以通过互联网,远程查看家中设备的状态,并对家中的各种智能设备进行远程操控,如灯光、空调、摄像头、安防系统等。接下来,将详细阐述与“Smart_Home_Remote_Monitoring_System:智能家居远程监控系统”相关的知识点。 ### 系统架构 智能家居远程监控系统一般包括以下几个核心组件: 1. **感知层**:这一层通常包括各种传感器和执行器,它们负责收集家居环境的数据(如温度、湿度、光线强度、烟雾浓度等)以及接收用户的远程控制指令并执行相应的操作。 2. **网络层**:网络层负责传输感知层收集的数据和用户的控制命令。这通常通过Wi-Fi、ZigBee、蓝牙等无线通信技术来实现,有时也可能采用有线技术。 3. **控制层**:控制层是系统的大脑,负责处理收集来的数据,执行用户指令,以及进行智能决策。控制层可能包括一个或多个服务器、微控制器或专用的智能设备(如智能路由器)。 4. **应用层**:应用层提供用户界面,可以是移动APP、网页或者是PC客户端。用户通过这些界面查看数据、发出控制指令,并进行系统配置。 ### 开源系统 提到“系统开源”,意味着该智能家居远程监控系统的源代码是开放的,允许用户、开发者或组织自由地获取、使用、修改和分发。开源的智能家居系统具有以下优势: 1. **定制性**:用户可以定制和扩展系统的功能,以满足特定的使用需求。 2. **透明性**:系统的源代码对用户公开,用户可以完全了解软件是如何工作的,这增加了用户对系统的信任。 3. **社区支持**:开源项目通常拥有活跃的开发者和用户社区,为系统的改进和问题解决提供持续的支持。 4. **成本效益**:由于无需支付昂贵的许可费用,开源系统对于个人用户和小型企业来说更加经济。 ### 实现技术 实现智能家居远程监控系统可能涉及以下技术: 1. **物联网(IoT)技术**:使各种设备能够相互连接和通信。 2. **云服务**:利用云计算的强大计算能力和数据存储能力,进行数据处理和存储。 3. **机器学习和人工智能**:提供预测性分析和自动化控制,使系统更加智能。 4. **移动通信技术**:如4G/5G网络,保证用户即使在外出时也能远程监控和控制家庭设备。 5. **安全性技术**:包括数据加密、身份验证、安全协议等,保护系统的安全性和用户隐私。 ### 关键功能 智能家居远程监控系统可能具备以下功能: 1. **远程控制**:用户可以通过移动设备远程开启或关闭家中电器。 2. **实时监控**:用户可以实时查看家中的视频监控画面。 3. **环境监控**:系统可以监测家中的温度、湿度、空气质量等,并进行调节。 4. **安全报警**:在检测到异常情况(如入侵、火灾、气体泄漏等)时,系统可以及时向用户发送警报。 5. **自动化场景**:根据用户的习惯和偏好,系统可以自动执行一些场景设置,如早晨自动打开窗帘,晚上自动关闭灯光等。 ### 应用场景 智能家居远程监控系统广泛应用于家庭、办公室、零售店铺、酒店等多种场合。其主要应用场景包括: 1. **家庭自动化**:为用户提供一个更加安全、便捷、舒适的居住环境。 2. **远程照看老人和儿童**:在工作或出差时,可以远程照看家中老人和儿童,确保他们的安全。 3. **节能减排**:通过智能监控和调节家中设备的使用,有助于节省能源,减少浪费。 4. **商业监控**:商业场所通过安装远程监控系统,可以有效提高安全管理水平,减少财产损失。 ### 结论 智能家居远程监控系统通过利用现代信息技术和网络通信技术,提供了一种便捷的家居管理方式。其开源特性和多样化的实现技术,不仅降低了用户的使用成本,也增加了系统的灵活性和可扩展性。随着技术的不断进步和人们生活水平的提高,智能家居远程监控系统将扮演越来越重要的角色。
recommend-type

【版本控制】:分层数据流图的高效维护与变更管理

# 摘要 本文系统地探讨了版本控制和分层数据流图设计的重要性和应用实践。第一章强调版本控制的基础知识和其在软件开发生命周期中的关键作用。第二章详细介绍了分层数据流图的设计原理,包括基本概念、设计方法和表示技巧,以及如何通过这些图解高效地管理和沟通软件设计。第三章探讨了版本控制系统的选择与配置,比较了不同类型系统的特点,并提供了配置主流系统的实际案例。第四章重点讨论分层数据流图的变更管理流程,阐述
recommend-type

操作系统原理实验一线程与同步

### 关于操作系统原理实验中线程与同步机制的示例 在现代操作系统的设计中,多线程环境下的同步问题是核心之一。为了确保多个线程能够安全地访问共享资源而不发生竞争条件(race condition),多种同步机制被引入并广泛应用于实际开发中。以下是几种常见的线程同步机制以及其实现方式。 #### 1. 使用屏障(Barrier)进行线程同步 屏障是一种用于协调一组线程完成特定阶段后再继续执行下一阶段的工具。它通常用于需要所有线程达到某个检查点后才能继续运行的情况。C++20 中引入了 `std::barrier` 类型作为原子引用的一部分[^1],这使得开发者能够在复杂的多线程环境中更高效地
recommend-type

远程调试Java应用:在服务器上使用Tomcat进行Debug

标题“java tomcat 远程调试 在服务器上debug”暗示本文主要讲解在服务器上如何使用Java开发工具对Tomcat进行远程调试的过程。在深入了解这个过程之前,需要对Java、Tomcat以及远程调试的概念有所掌握。 Java是一种广泛使用的面向对象的编程语言,它强调跨平台的可移植性,通过Java虚拟机(JVM)在不同操作系统上执行。Java开发工具众多,其中最为人熟知的是Java开发工具包(JDK),它包括了Java编译器(javac)、Java运行时环境(java)以及大量的API和工具。 Apache Tomcat是一个开源的Servlet容器,实现了Java Servlet和JavaServer Pages(JSP)的技术规范。Tomcat由Apache软件基金会管理,它用于处理HTML页面和CGI脚本,提供一个HTTP服务器的运行环境。Tomcat可以独立运行,也可以作为Web服务器的插件运行。 远程调试是软件开发过程中一个重要的步骤,它允许开发者在不同的地点通过网络连接到运行中的程序进行问题诊断和代码调试。远程调试通常涉及客户端与服务端的配合,客户端通过网络发送调试请求到服务端,服务端再将调试信息反馈给客户端,这样开发者就可以远程查看程序运行状态,进行断点跟踪和变量查看等操作。 在Java中,远程调试通常利用Java开发工具包(JDK)中的jdb工具来实现,它是一个简单的命令行调试器。在Tomcat的远程调试中,开发者可能还会用到集成开发环境(IDE),如IntelliJ IDEA、Eclipse等,这些IDE提供了更为直观和功能丰富的图形界面,便于进行远程调试操作。 远程调试Tomcat服务器上的Java Web应用的过程大致如下: 1. 配置Tomcat服务器以启用调试模式: - 在启动Tomcat时,需要添加JVM参数,例如:`-Xdebug -Xrunjdwp:transport=dt_socket,server=y,address=端口号,suspend=n`。 其中,`address`参数后跟的是端口号,远程调试将通过这个端口进行连接。`suspend=n`表示Tomcat启动时不挂起等待调试器连接。 2. 使用IDE或jdb工具连接到Tomcat服务器: - 在IDE中,选择远程调试配置,设置主机名和端口与Tomcat服务器上配置的保持一致。然后启动调试会话。 - 如果使用jdb,可以通过命令行启动并附加到指定端口,例如:`jdb -attach localhost:端口号`。 3. 在客户端进行调试: - 一旦远程调试连接建立,就可以进行标准的调试操作,如设置断点、查看变量、单步执行代码等。 4. 调试完成后,确保关闭调试模式,避免因暴露端口带来的安全风险。 在文档的描述部分提到“NULL”,表明原文档并未提供详细的描述内容。但是,根据博文链接,我们可以预见到文章可能包含了具体操作步骤和图示来说明如何在实际环境中对Tomcat进行远程调试。 关于“【压缩包子文件的文件名称列表】”部分,列表中包含的文件名看似与Java Tomcat远程调试主题无关。这些文件名看起来像是Word文档的内部结构,如`[Content_Types].xml`、`docProps`、`word`、`customXml`和`_rels`,这些可能是被压缩或打包的Word文档中的文件组成部分。这表明文档可能是以某种格式打包后进行分享的,但是在分析Java Tomcat远程调试的知识点时,这部分内容并不相关。 标签“源码 工具”提示我们在处理远程调试时,通常需要关注源代码层面的调试以及使用各种调试工具。开发者通常需要源代码来设置断点和查看变量值等,而工具则帮助他们实现这些调试行为。 综上所述,本文的主干内容集中在对如何在远程服务器上进行Java Tomcat应用调试的说明,这通常用于开发人员在开发和测试阶段进行问题定位和解决。这个过程需要开发者对Java及Tomcat有充分的认识,并且熟悉使用开发和调试工具。同时,远程调试是一个高级功能,适用于特定的开发和测试场景,它涉及网络连接和服务器配置,因此在实施过程中需要考虑安全和效率的因素。
手机看
程序员都在用的中文IT技术交流社区

程序员都在用的中文IT技术交流社区

专业的中文 IT 技术社区,与千万技术人共成长

专业的中文 IT 技术社区,与千万技术人共成长

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

客服 返回
顶部