import torch from torch import nn from torch.utils.tensorboard import SummaryWriter class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() self.model1 = nn.Sequential( nn.Flatten(), nn.Linear(3072, 100), nn.ReLU(), nn.Linear(100, 1), nn.Sigmoid() ) def forward(self, x): x = self.model1(x) return x import torch import torchvision from PIL.Image import Image from torch.utils.tensorboard import SummaryWriter from torch import nn, optim from torch.utils.data import dataloader from torchvision.transforms import transforms from module import MyModule train = torchvision.datasets.CIFAR10(root="../data",train=True, download=True, transform= transforms.ToTensor()) vgg_model = torchvision.models.vgg16(pretrained=True) vgg_model.classifier.add_module('add_linear', nn.Linear(1000,2)) #ToImage = transforms.ToPILImage() #Image.show(ToImage(train[0][0])) train_data = dataloader.DataLoader(train, batch_size = 128, shuffle=True) model = MyModule() #criterion = nn.BCELoss() epochs = 5 learningRate = 1e-3 optimizer = optim.SGD(model.parameters(),lr = learningRate) loss = nn.CrossEntropyLoss() Writer = SummaryWriter(log_dir="Training") step = 0 for epoch in range(epochs): total_loss = 0 for data,labels in train_data: y = vgg_model(data) los = loss(y,labels) optimizer.zero_grad() los.backward() optimizer.step() Writer.add_scalar("Training",los,step) step = step + 1 if step%100 == 0: print("Training for {0} times".format(step)) total_loss += los print("total_loss is {0}".format(los)) Writer.close() torch.save(vgg_model,"model_vgg.pth")修改变成VGG16-两分类模型
时间: 2023-12-30 17:04:13 浏览: 164
lbcnn.torch-master.zip_..累lbcnn;x3_LBCNN_lbp_lbp 神经网络_torch
好的,您的问题是如何将这段代码修改成一个基于VGG16的两分类模型?我可以给您一些指导。
首先,我们需要将原先的MyModule替换成VGG16模型。可以使用torchvision中已经实现好的VGG16模型,但需要修改最后一层的输出为两个类别。具体实现方法如下:
```python
vgg_model = torchvision.models.vgg16(pretrained=True)
vgg_model.classifier.add_module('add_linear', nn.Linear(1000,2))
```
这段代码会下载预训练好的VGG16模型,并在其分类器中添加一个新的线性层,输出为2个类别。
其次,我们需要修改损失函数。因为我们现在是进行两分类,所以可以使用交叉熵损失函数(nn.CrossEntropyLoss())。
最后,修改训练过程中的模型、优化器、损失函数等参数即可。具体代码实现如下:
```python
import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torch import nn, optim
from torch.utils.data import dataloader
from torchvision.transforms import transforms
train = torchvision.datasets.CIFAR10(root="../data",train=True, download=True, transform= transforms.ToTensor())
vgg_model = torchvision.models.vgg16(pretrained=True)
vgg_model.classifier.add_module('add_linear', nn.Linear(1000,2))
train_data = dataloader.DataLoader(train, batch_size = 128, shuffle=True)
criterion = nn.CrossEntropyLoss()
epochs = 5
learningRate = 1e-3
optimizer = optim.SGD(vgg_model.parameters(),lr = learningRate)
Writer = SummaryWriter(log_dir="Training")
step = 0
for epoch in range(epochs):
total_loss = 0
for data,labels in train_data:
optimizer.zero_grad()
y = vgg_model(data)
los = criterion(y,labels)
los.backward()
optimizer.step()
Writer.add_scalar("Training",los,step)
step = step + 1
if step%100 == 0:
print("Training for {0} times".format(step))
total_loss += los
print("total_loss is {0}".format(total_loss))
Writer.close()
torch.save(vgg_model,"model_vgg.pth")
```
希望这个回答能够帮到您!
阅读全文