halcon尺寸测量

时间: 2023-10-10 16:12:13 浏览: 154
Halcon是一个计算机视觉软件库,其中包含了用于图像处理和测量的功能。在Halcon中进行尺寸测量可利用卡尺工具来实现。卡尺工具是Halcon中的一种方法,可以用来拟合线和圆等几何形状。利用卡尺测量,可以通过调节参数来提取图像中的边缘,并自行拟合直线或圆。 使用Halcon进行尺寸测量时,可以利用Metrology方法来创建测量对象。这种方法适用于目标与背景差异明显的图像,可以方便地对目标进行尺寸测量,无需进行边缘提取等额外的步骤。不过,需要注意的是,目标的相对位置应该基本保持不变才能准确测量。 在测量过程中,可以指定要测量的直线或圆弧的位置和方向等信息,并将其存储在测量对象中。通过传递句柄参数,可以访问测量对象。当不再需要测量对象时,可以使用close_measure函数来销毁它。 总结来说,Halcon中的尺寸测量可以通过卡尺工具来实现,可以利用Metrology方法创建测量对象,并通过指定位置和方向等信息进行测量。需要注意的是,目标的相对位置应该基本保持不变才能准确测量,并且在不使用测量对象时需要进行销毁操作。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
相关问题

halcon尺寸测量程序

以下是一个使用Halcon进行尺寸测量的示例程序: ```halcon read_image(Image, 'path_to_image') // 读取图像 // 进行预处理,例如平滑、灰度化等 smooth_image(Image, Smoothed, 'gauss') convert_image_type(Smoothed, ImageGray, 'byte') // 边缘检测 edges_sub_pix(ImageGray, Edges, 'canny', 1, 20, 40) // 提取轮廓 threshold(Edges, Region, 128, 255) connection(Region, ConnectedRegions) select_shape(ConnectedRegions, SelectedRegions, 'area', 'and', 500, 9999999) // 拟合直线 gen_contour_region_xld(SelectedRegions, Contours, 'border') fit_line_contour_xld(Contours, 'tukey', -1, 0, 5, 2, LineRowBegin, LineColBegin, LineRowEnd, LineColEnd) // 计算直线长度 distance_pp(LineRowBegin, LineColBegin, LineRowEnd, LineColEnd, Distance) // 输出结果 disp_distance(LineRowBegin, LineColBegin, LineRowEnd, LineColEnd, Distance) // 可以根据实际情况添加其他处理步骤,如角度测量、圆形拟合等 ``` 这是一个简单的尺寸测量程序,其中包括图像读取、预处理、边缘检测、轮廓提取、直线拟合和长度测量等步骤。根据您的具体需求,您可能需要根据图像特性和测量目标进行参数调整和算法优化。请注意,这只是一个示例程序,实际使用时需要根据具体情况进行适当修改和调整。

halcon怎么测量尺寸

在Halcon中,可以使用卡尺工具来测量尺寸。具体步骤如下: 1. 打开Halcon软件,导入需要测量的图像。 2. 在工具栏中选择卡尺工具(Caliper Tool)。 3. 在图像中选择需要测量的区域,并设置卡尺工具的参数,如卡尺类型、卡尺长度、卡尺宽度、卡尺角度等。 4. 点击“Run”按钮,运行卡尺工具,测量结果会在图像上显示出来。 5. 可以通过代码来获取测量结果,如卡尺长度、卡尺宽度、卡尺角度等。 下面是一个简单的示例代码,用于测量图像中两点之间的距离: ```python dev_open_window(0, 0, 512, 512, 'black', WindowHandle) read_image(Image, 'image.jpg') dev_display(Image) dev_set_color(WindowHandle, 'red') dev_set_line_width(WindowHandle, 2.0) dev_create_calib('point', 2, 1, CalibHandle) dev_set_calib(CalibHandle, 'index', 0) dev_set_calib(CalibHandle, 'row', 100) dev_set_calib(CalibHandle, 'column', 100) dev_set_calib(CalibHandle, 'index', 1) dev_set_calib(CalibHandle, 'row', 200) dev_set_calib(CalibHandle, 'column', 200) dev_measure_calib(Image, CalibHandle, 1, 2, 'point', 'nearest_neighbor', 'positive', 'length', Distance) write_string(WindowHandle, Distance, 'window', 20, 20, 'red', [], []) ``` 这段代码会在图像上选择两个点,并用红色线段连接它们,并在图像上显示出两点之间的距离。

相关推荐

最新推荐

Oracle数据库实用教程第三章 PL/SQL程序设计.pptx

Oracle数据库实用教程第三章 PL/SQL程序设计.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

具体操作:你可以将 PyTorch 安装路径添加到环境变量中,或者使用 PyCharm 等集成开发环境来设置 Python 解释器。

好的,以下是具体的操作步骤: 添加 PyTorch 安装路径到环境变量中: 1. 打开计算机的属性,点击高级系统设置; 2. 在弹出的窗口中,点击环境变量; 3. 在系统变量中,找到 PATH 变量,点击编辑; 4. 在编辑系统变量窗口中,点击新建; 5. 输入 PyTorch 安装路径,例如 `C:\Program Files\PyTorch`,点击确定; 6. 点击确定,保存设置。 设置 PyCharm 的 Python 解释器: 1. 打开 PyCharm,点击 File -> Settings 进入设置界面; 2. 在设置界面中,选择 Project -> Project I

TS16949发展史及五大手册的意义.pptx

TS16949发展史及五大手册的意义.pptx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

粒子群多目标算法matlab代码【算法实现步骤】计算适应度函数

# 1. 粒子群多目标算法简介 ## 1.1 粒子群多目标算法概述 在多目标优化问题中,粒子群多目标算法是一种常用的元启发式优化算法。它借鉴了鸟群觅食的行为,通过不断调整粒子的位置和速度来搜索最优解空间。相比于传统的单目标优化算法,粒子群多目标算法能够有效解决多目标优化问题。 ## 1.2 算法原理与特点 粒子群多目标算法的核心原理是通过模拟群体中粒子的运动,不断更新粒子的位置和速度,以达到最优解。其特点包括易于实现、收敛速度快、对参数不敏感等。 ## 1.3 相关研究现状分析 目前,粒子群多目标算法在多目标优化领域得到了广泛应用,并在不同领域取得了一定的成果。研究者们也在不断探索

ignoring old recipe for target debug/qrc_music.cpp

这个错误通常是由于Makefile文件中的依赖关系出现问题导致的。它表明Makefile尝试编译一个旧的目标,但是该目标已经被更新或删除了,导致编译失败。 解决此问题的方法是删除旧的目标并重新编译。您可以尝试使用"make clean"命令清除旧的目标和对象文件,然后重新运行"make"命令重新编译。如果问题仍然存在,您可能需要检查Makefile文件中的依赖关系是否正确。

生存分析和COX回归PPT课件.pptx

生存分析和COX回归PPT课件.pptx

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩