weights_path = "./resNet50.pth" assert os.path.exists(weights_path), f"file: '{weights_path}' dose not exist." model.load_state_dict(torch.load(weights_path, map_location=device))
时间: 2024-04-01 21:30:58 浏览: 187
yolov4-tflite将 YOLO v4、YOLOv3、YOLO tiny .weights 转换为 .pb、.tflite
这段代码加载了预训练的ResNet-50模型的权重,并将这些权重应用到之前创建的模型`model`中。具体地,这段代码首先定义了一个变量`weights_path`,表示预训练的模型权重文件的路径。然后,代码使用`assert`语句来判断该文件是否存在,如果文件不存在,则会抛出一个异常,异常信息为`file: '{weights_path}' dose not exist.`。
如果文件存在,则程序会继续执行后面的代码。这段代码使用了`torch.load`函数从`weights_path`中加载预训练的模型权重,并使用`model.load_state_dict`函数将这些权重应用到`model`中。需要注意的是,`map_location`参数用于指定模型应该被加载到哪个设备上,如果不指定该参数,则模型会被加载到CPU上,而不是GPU上。
需要注意的是,预训练模型的权重文件通常非常大,下载和加载这些文件可能会消耗大量的时间和计算资源。因此,在使用这段代码之前,需要确保已经下载了预训练模型的权重文件,并将其保存在`weights_path`所表示的路径中。
阅读全文