function dX = Loren(t,X) globala;%变量不放入参数表中 globalb; globalc; x=X(1);y=X(2);z=X(3); %Y的三个列向量为相互正交的单位向量 %输出向量的初始化 dX=zeros(6,1);%Lorenz吸引子 dX(1)=a*(y-x); dX(2)=x*(b-z)-y; dX(3)=x*y-c*z; end 解释一下这段代码
时间: 2023-08-02 13:05:59 浏览: 187
这段代码是定义了一个名为Loren的函数,该函数包含了三个全局变量a、b、c,以及一个输入参数t和一个状态向量X。函数中通过解析状态向量X的值,计算出一个新的输出向量dX。
具体来说,这段代码实现了Lorenz吸引子的计算过程。Lorenz吸引子是一种数学模型,用于描述一类非线性动态系统的行为,其具体表达式为:
dx/dt = a(y-x)
dy/dt = x(b-z)-y
dz/dt = xy-cz
其中,a、b、c是三个常数,(x,y,z)是吸引子在三维空间中的坐标点。
在这段代码中,函数的输入参数t没有被使用,状态向量X被解析为三元素向量(x,y,z),然后根据吸引子的公式,计算出对应的输出向量dX。具体来说,dX的三个元素分别为:
dX(1) = a*(y-x)
dX(2) = x*(b-z)-y
dX(3) = x*y-c*z
这些元素的值分别对应吸引子在三个维度上的变化率。最后,函数返回这个输出向量dX。
阅读全文
相关推荐


















