% 定义横坐标和纵坐标的值x = [-3, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5];y = [225.3, 56.7, 18.1, 7.2, 3.5, 2.0, 1.3, 0.9, 0.7, 0.5, 0.4, 0.3];% 画出函数图像plot(x, y, 'o-');将以上代码的横坐标范围改成(-2.5,1.5),纵坐标范围改成(0,60)

时间: 2023-09-11 09:05:57 浏览: 52
可以使用 xlim 和 ylim 函数来设置横坐标和纵坐标范围,代码如下: ```matlab x = [-3, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5]; y = [225.3, 56.7, 18.1, 7.2, 3.5, 2.0, 1.3, 0.9, 0.7, 0.5, 0.4, 0.3]; plot(x, y, 'o-'); xlim([-2.5, 1.5]); ylim([0, 60]); ``` 其中,xlim 函数用于设置横坐标范围为 [-2.5, 1.5],ylim 函数用于设置纵坐标范围为 [0, 60]。运行以上代码即可得到相应的函数图像。
相关问题

用matlab画出纵坐标F(z)的值分别为225.3,56.7,18.1,7.2,3.5,2.0,1.3,0.9,0.7,0.5,0.4,0.3,横坐标对应的值为-3,-2.5,-2,-1.5,-1,-0.5,0,0.5,1,1.5,2,2.5的函数图像

可以通过以下代码实现: ``` % 定义横坐标和纵坐标的值 x = [-3, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5]; y = [225.3, 56.7, 18.1, 7.2, 3.5, 2.0, 1.3, 0.9, 0.7, 0.5, 0.4, 0.3]; % 画出函数图像 plot(x, y, 'o-'); ``` 运行以上代码,即可画出对应的函数图像。

用matlab实现基于stanley算法的横向控制

好的,针对您的问题,我可以给出如下思路和代码示例: 首先,Stanley算法是一种基于横向误差的车辆路径跟踪算法,其核心思想是计算车辆与参考路径之间的横向距离和方向误差并进行控制,使车辆沿着参考路径行驶。在具体实现中,可以通过以下步骤实现基于Stanley算法的横向控制: 1. 定义参考路径 在实现Stanley算法前,需要先定义一个参考路径。可以使用一系列连续的点作为路径,也可以使用参数方程或者函数表达式来表示路径。 例如,以下代码定义了一个简单的参考路径: ``` % 定义参考路径 x_ref = 0:0.1:10; % x 轴坐标 y_ref = sin(x_ref); % y 轴坐标 ``` 2. 计算横向误差和方向误差 接下来,需要计算车辆当前位置与参考路径之间的横向距离和方向误差。可以使用以下公式计算: ``` e = y - y_ref; % 横向误差 theta_e = atan2(dy_ref, 1) - theta; % 方向误差 ``` 其中,`y` 表示车辆当前位置的纵坐标,`dy_ref` 表示参考路径在当前位置处的斜率,`theta` 表示车辆当前朝向角度。`atan2(dy_ref, 1)` 表示求参考路径在当前位置处的斜率角度。 3. 计算控制指令 根据横向误差和方向误差,可以计算出控制指令。Stanley算法中通常采用如下公式计算: ``` delta = theta_e + atan(k * e / v); % 转角控制指令 ``` 其中,`k` 表示控制增益,`v` 表示车辆当前速度。 4. 进行车辆控制 最后,根据控制指令,进行车辆控制。例如,可以通过控制车辆前轮转角来实现横向控制。 以下是一个简单的MATLAB示例代码,实现基于Stanley算法的横向控制: ``` % 定义参考路径 x_ref = 0:0.1:10; % x 轴坐标 y_ref = sin(x_ref); % y 轴坐标 % 定义初始状态 x = 0; % x 坐标 y = 0.5; % y 坐标 theta = 0; % 车辆朝向角度 v = 5; % 车辆速度 % 定义控制增益 k = 0.1; % 循环控制 for i = 1:length(x_ref) % 计算误差 e = y - y_ref(i); dy_ref = cos(x_ref(i)); % 参考路径在当前位置处的斜率 theta_e = atan2(dy_ref, 1) - theta; % 计算控制指令 delta = theta_e + atan(k * e / v); % 控制车辆 L = 2.5; % 车辆轮距 delta_max = pi / 6; % 最大转角限制 delta = max(-delta_max, min(delta_max, delta)); % 限制转角范围 beta = atan((L / 2) * tan(delta) / v); x = x + v * cos(theta + beta) * 0.1; y = y + v * sin(theta + beta) * 0.1; theta = theta + v / L * sin(beta) * 0.1; % 绘制车辆和参考路径 plot(x_ref, y_ref, 'b', x, y, 'ro'); axis equal; drawnow; end ``` 以上是一个简单的基于Stanley算法的横向控制示例,您可以根据实际需求进行调整和优化。

相关推荐

最新推荐

recommend-type

java 地心坐标系(ECEF)和WGS-84坐标系(WGS84)互转的实现

主要介绍了java 地心坐标系(ECEF)和WGS-84坐标系(WGS84)互转的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

python_matplotlib改变横坐标和纵坐标上的刻度(ticks)方式

用matplotlib画二维图像时,默认情况下的横坐标和纵坐标显示的值有时达不到自己的需求,需要借助xticks()和yticks()分别对横坐标x-axis和纵坐标y-axis进行设置。 import numpy as np import matplotlib.pyplot as ...
recommend-type

python-opencv获取二值图像轮廓及中心点坐标的代码

矩是描述形状特征的数学对象,其中一阶矩`m10`和`m01`对应于质心的x和y坐标,而`m00`是面积。我们可以通过以下方式获取中心点坐标: ```python M = cv2.moments(contours[0]) center_x = int(M["m10"] / M["m00"]) ...
recommend-type

Java编程实现轨迹压缩之Douglas-Peucker算法详细代码

(3)比较该距离dmax与预先定义的阈值Dmax大小,如果dmax,则将该直线AB作为曲线段的近似;(4)若dmax>=Dmax,则使C点将曲线AB分为AC和CB两段,并分别对这两段进行处理。 4. 点到直线的距离 点到直线的距离是指点...
recommend-type

在Pytorch中使用Mask R-CNN进行实例分割操作

模型的输入是一个包含多个张量的列表,每个张量代表一个图像,张量的维度为`(n, c, h, w)`,其中n是图像数量,c是通道数(RGB图像为3),h和w分别是图像的高度和宽度,所有像素值位于0-1之间。 模型的输出包括:...
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。