ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()这里的long()是指?用的python2语法?

时间: 2024-03-29 14:34:51 浏览: 13
在 PyTorch 中,`long()` 是将 Tensor 转换为 long 类型的方法。在 Python 2 中,`long` 是一种数据类型,但在 Python 3 中被统一为 `int`。因此,如果您使用的是 Python 3,您可以使用`int()`方法来将 Tensor 转换为整数类型。 该行代码的作用是创建一个从0到self.num_timesteps-1的等差数列,并将其舍入为整数,然后将其转换为long类型的Tensor。其中`self.num_timesteps_cond`是一个整数,用于指定等差数列的长度。
相关问题

class sampler (Sampler): def u (self, train size, batch_ size): num_ data = train_ size self .num_ per batch = int(num_ data 1 batch_ size) self .batch size = batch_ size self .range = torch.arange(0, batch_ size) .view(1, batch_ size).long() self.leftover flag = False if num_ data % batch_ size: self.leftover = torch.arange(self .num_ per batch * batch_ size, num_ data) . long( )self.leftover flag = True def_ iter_a (self): rand_ num = torch.randperm(self .num_ per_ batch) .view(-1, 1) * self .batch size self .rand_ num = rand_ num. expand(self .num_ per_ batch, self .batch_size) + self .range self .rand num_view = self .rand_ num. view(-1) if self.leftover_ flag: self .rand_ num_ view = torch.cat((self.rand_ num_ view, self.leftover), 0 return iter(self .rand_ num_ view) def Len_ (self): return num_ data 分析上述代码中的错误

代码中的错误在于使用了错误的语法和变量命名。以下是需要修正的错误: 1. 函数 `u()` 的定义中,应该将 `train size` 改为 `train_size`。同样的,`batch_ size` 改为 `batch_size`。 2. 在 `u()` 函数中,`int(num_ data 1 batch_ size)` 的语法是错误的,应该改为 `int(num_data / batch_size)`。 3. 在 `u()` 函数中,`self.leftover flag` 的语法也是错误的,应该改为 `self.leftover_flag`。 4. 在 `u()` 函数中,`long( )self.leftover flag = True` 的语法是错误的,应该将其分成两行,并且添加缺少的冒号。 5. 在 `def_ iter_a()` 函数中,`rand_ num = torch.randperm(self .num_ per_ batch) .view(-1, 1) * self .batch size` 的语法是错误的,应该将 `self .batch size` 改为 `self.batch_size`。 6. 在 `def_ iter_a()` 函数中,`self .rand num_view = self .rand_ num. view(-1)` 的语法是错误的,应该将 `self .rand num_view = self .rand_ num. view(-1)` 改为 `self.rand_num_view = self.rand_num.view(-1)`。 7. 在 `def_ iter_a()` 函数中,`if self.leftover_ flag:` 的语法是错误的,应该将其改为 `if self.leftover_flag:`。 8. 在 `def_ iter_a()` 函数中,`self .rand_ num_ view = torch.cat((self.rand_ num_ view, self.leftover), 0` 的语法是错误的,应该将其改为 `self.rand_num_view = torch.cat((self.rand_num_view, self.leftover), 0)`。 9. 在 `def Len_()` 函数中,`return num_ data` 的语法是错误的,应该将其改为 `return num_data`。 修正以上错误后的代码如下: ```python class Sampler: def u(self, train_size, batch_size): num_data = train_size self.num_per_batch = int(num_data / batch_size) self.batch_size = batch_size self.range = torch.arange(0, batch_size).view(1, batch_size).long() self.leftover_flag = False if num_data % batch_size: self.leftover = torch.arange(self.num_per_batch * batch_size, num_data).long() self.leftover_flag = True def iter_a(self): rand_num = torch.randperm(self.num_per_batch).view(-1, 1) * self.batch_size self.rand_num = rand_num.expand(self.num_per_batch, self.batch_size) + self.range self.rand_num_view = self.rand_num.view(-1) if self.leftover_flag: self.rand_num_view = torch.cat((self.rand_num_view, self.leftover), 0) return iter(self.rand_num_view) def Len(self): return num_data ``` 以上是修正后的代码。修正后代码中的变量命名和语法都是正确的。

为以下代码写注释:class TransformerClassifier(torch.nn.Module): def __init__(self, num_labels): super().__init__() self.bert = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=num_labels) # print(self.bert.config.hidden_size) #768 self.dropout = torch.nn.Dropout(0.1) self.classifier1 = torch.nn.Linear(640, 256) self.classifier2 = torch.nn.Linear(256, num_labels) self.regress1 = torch.nn.Linear(640, 256) self.regress2 = torch.nn.Linear(256, 2) self.regress3 = torch.nn.Linear(640, 256) self.regress4 = torch.nn.Linear(256, 2) # self.regress3 = torch.nn.Linear(64, 1) # self.regress3 = torch.nn.Linear(640, 256) # self.regress4 = torch.nn.Linear(256, 1) # self.soft1 = torch.nn.Softmax(dim=1) def forward(self, input_ids, attention_mask, token_type_ids): # outputs = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) # pooled_output = outputs.logits # # pooled_output = self.dropout(pooled_output) # # logits = self.classifier(pooled_output) outputs = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) logits = outputs.logits clas = F.relu(self.classifier1(logits)) clas = self.classifier2(clas) death = F.relu(self.regress1(logits)) # xingqi = F.relu(self.regress2(xingqi)) death = self.regress2(death) life = F.relu(self.regress3(logits)) # xingqi = F.relu(self.regress2(xingqi)) life = self.regress4(life) # fakuan = F.relu(self.regress3(logits)) # fakuan = self.regress4(fakuan) # print(logits.shape) # logits = self.soft1(logits) # print(logits) # print(logits.shape) return clas,death,life

注释如下: ``` class TransformerClassifier(torch.nn.Module): # 定义一个名为TransformerClassifier的继承自nn.Module的类 def __init__(self, num_labels): # 初始化函数,num_labels为标签数 super().__init__() # 调用父类的构造函数 self.bert = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=num_labels) # 用预训练的中文Bert模型初始化self.bert, 输出维度为num_labels # print(self.bert.config.hidden_size) #768 self.dropout = torch.nn.Dropout(0.1) # 定义dropout层,丢弃概率为0.1 self.classifier1 = torch.nn.Linear(640, 256) # 定义一个全连接层,输入维度为640,输出维度为256 self.classifier2 = torch.nn.Linear(256, num_labels) # 定义一个全连接层,输入维度为256,输出维度为num_labels self.regress1 = torch.nn.Linear(640, 256) # 定义一个全连接层,输入维度为640,输出维度为256 self.regress2 = torch.nn.Linear(256, 2) # 定义一个全连接层,输入维度为256,输出维度为2 self.regress3 = torch.nn.Linear(640, 256) # 定义一个全连接层,输入维度为640,输出维度为256 self.regress4 = torch.nn.Linear(256, 2) # 定义一个全连接层,输入维度为256,输出维度为2 def forward(self, input_ids, attention_mask, token_type_ids): # 前向传播函数,输入参数分别为input_ids、attention_mask、token_type_ids outputs = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) # 将输入传入self.bert中,得到输出 logits = outputs.logits # 从输出中得到logits clas = F.relu(self.classifier1(logits)) # 将logits输入到self.classifier1中,经过relu函数后得到clas clas = self.classifier2(clas) # 将clas输入到self.classifier2中,得到分类结果 death = F.relu(self.regress1(logits)) # 将logits输入到self.regress1中,经过relu函数后得到death death = self.regress2(death) # 将death输入到self.regress2中,得到死亡概率 life = F.relu(self.regress3(logits)) # 将logits输入到self.regress3中,经过relu函数后得到life life = self.regress4(life) # 将life输入到self.regress4中,得到生存概率 return clas, death, life # 返回分类结果、死亡概率、生存概率

相关推荐

最新推荐

recommend-type

torch-1.7.1+cu110-cp37-cp37m-linux_x86_64.whl离线安装包linux系统x86_64

torch-1.7.1+cu110-cp37-cp37m-linux_x86_64.whl torchvision-0.8.2+cu110-cp37-cp37m-linux_x86_64.whl 由于超过1G无法上传,给的是百度云链接!!!!!需自行下载
recommend-type

关于torch.optim的灵活使用详解(包括重写SGD,加上L1正则)

torch.optim的灵活使用详解 1. 基本用法: 要构建一个优化器Optimizer,必须给它一个包含参数的迭代器来优化,然后,我们可以指定特定的优化选项, 例如学习速率,重量衰减值等。 注:如果要把model放在GPU中,需要...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步