def __init__(self,model,): super().__init__() self.model = model self.channels = self.model.channels self.self_condition = self.model.self_condition #条件控制 self.image_size = image_size #图片size self.objective = objective if beta_schedule == 'linear': betas = linear_beta_schedule(timesteps) elif beta_schedule == 'cosine': betas = cosine_beta_schedule(timesteps) else: raise ValueError(f'unknown beta schedule {beta_schedule}') alphas = 1. - betas alphas_cumprod = torch.cumprod(alphas, axis=0) alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value = 1.) timesteps, = betas.shape self.num_timesteps = int(timesteps) self.loss_type = loss_type

时间: 2024-02-15 17:28:49 浏览: 30
这是一个Python类的初始化方法,该类的功能和具体实现需要更多代码来确定。其中的参数解释如下: - model: 模型 - channels: 图像的通道数 - self_condition: 条件控制 - image_size: 图片的尺寸大小 - objective: 目标 - beta_schedule: beta值的计算方式,可选的有'linear'和'cosine' - timesteps: 时间步数 - alphas: alpha值,为1减去beta值 - alphas_cumprod: alpha值的累乘 - alphas_cumprod_prev: alpha值的前缀累乘 - num_timesteps: 时间步数 - loss_type: 损失函数类型 该初始化方法会将这些参数进行初始化,并保存在类的属性中,以便在类的其他方法中进行调用和使用。
相关问题

举例调用下面的方法 : class MultiHeadAttention(tf.keras.layers.Layer): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.d_model = d_model assert d_model % self.num_heads == 0 self.depth = d_model // self.num_heads self.query_dense = tf.keras.layers.Dense(units=d_model) self.key_dense = tf.keras.layers.Dense(units=d_model) self.value_dense = tf.keras.layers.Dense(units=d_model) self.dense = tf.keras.layers.Dense(units=d_model)

假设你已经定义了一个名为 `model` 的神经网络模型,其中包含了 `MultiHeadAttention` 层,你可以使用下面的方法来调用这个层: ``` import tensorflow as tf # 定义模型 class MyModel(tf.keras.Model): def __init__(self): super(MyModel, self).__init__() self.multi_head_attention = MultiHeadAttention(d_model=64, num_heads=8) def call(self, inputs): # 调用 MultiHeadAttention 层 x = self.multi_head_attention(inputs) return x # 初始化模型 model = MyModel() # 输入数据 inputs = tf.random.normal(shape=(32, 10, 64)) # 调用模型 outputs = model(inputs) # 输出结果 print(outputs.shape) ``` 在上面的代码中,我们首先定义了一个名为 `MyModel` 的神经网络模型,并在其中实例化了一个 `MultiHeadAttention` 层。然后,我们创建了一个 `model` 对象,该对象是 `MyModel` 的实例。接着,我们使用 `tf.random.normal()` 方法生成了一个形状为 `(32, 10, 64)` 的张量作为输入数据,然后将其传递给模型的 `call()` 方法,得到了模型的输出结果。最后,我们打印出了输出结果的形状。

def __init__(self, template_path): super(Model, self).__init__() # set template mesh self.template_mesh = jr.Mesh.from_obj(template_path, dr_type='n3mr') self.vertices = (self.template_mesh.vertices * 0.5).stop_grad() self.faces = self.template_mesh.faces.stop_grad() self.textures = self.template_mesh.textures.stop_grad() # optimize for displacement map and center self.displace = jt.zeros(self.template_mesh.vertices.shape) self.center = jt.zeros((1, 1, 3)) # define Laplacian and flatten geometry constraints self.laplacian_loss = LaplacianLoss(self.vertices[0], self.faces[0]) self.flatten_loss = FlattenLoss(self.faces[0])在每行代码后添加注释

``` def __init__(self, template_path): super(Model, self).__init__() # 初始化父类 # 加载模板网格 self.template_mesh = jr.Mesh.from_obj(template_path, dr_type='n3mr') # 缩放网格顶点坐标,并设置为不可求导 self.vertices = (self.template_mesh.vertices * 0.5).stop_grad() # 设置网格面和纹理,并设置为不可求导 self.faces = self.template_mesh.faces.stop_grad() self.textures = self.template_mesh.textures.stop_grad() # 初始化位移和中心 self.displace = jt.zeros(self.template_mesh.vertices.shape) # 位移 self.center = jt.zeros((1, 1, 3)) # 中心点 # 定义 Laplacian 和 flatten 约束损失 self.laplacian_loss = LaplacianLoss(self.vertices[0], self.faces[0]) # Laplacian 约束损失 self.flatten_loss = FlattenLoss(self.faces[0]) # flatten 约束损失 ``` 注释解释如下: - `super(Model, self).__init__()`:调用父类的构造函数进行初始化。 - `self.template_mesh = jr.Mesh.from_obj(template_path, dr_type='n3mr')`:从 OBJ 文件中加载模板网格。 - `self.vertices = (self.template_mesh.vertices * 0.5).stop_grad()`:将模板网格的顶点坐标缩放为原来的一半,并将其设置为不可求导。 - `self.faces = self.template_mesh.faces.stop_grad()`:将模板网格的面索引设置为不可求导。 - `self.textures = self.template_mesh.textures.stop_grad()`:将模板网格的纹理设置为不可求导。 - `self.displace = jt.zeros(self.template_mesh.vertices.shape)`:初始化位移变量,并将其设置为可求导的 0 张量。 - `self.center = jt.zeros((1, 1, 3))`:初始化中心点,并将其设置为可求导的 0 张量。 - `self.laplacian_loss = LaplacianLoss(self.vertices[0], self.faces[0])`:初始化 Laplacian 约束损失。 - `self.flatten_loss = FlattenLoss(self.faces[0])`:初始化 flatten 约束损失。

相关推荐

更改import torch import torchvision.models as models import torch.nn as nn import torch.nn.functional as F class eca_Resnet50(nn.Module): def init(self): super().init() self.model = models.resnet50(pretrained=True) self.model.avgpool = nn.AdaptiveAvgPool2d((1,1)) self.model.fc = nn.Linear(2048, 1000) self.eca = ECA_Module(2048, 8) def forward(self, x): x = self.model.conv1(x) x = self.model.bn1(x) x = self.model.relu(x) x = self.model.maxpool(x) x = self.model.layer1(x) x = self.model.layer2(x) x = self.model.layer3(x) x = self.model.layer4(x) x = self.eca(x) x = self.model.avgpool(x) x = torch.flatten(x, 1) x = self.model.fc(x) return x class ECA_Module(nn.Module): def init(self, channel, k_size=3): super(ECA_Module, self).init() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x) y = self.conv(y.squeeze(-1).transpose(-1,-2)).transpose(-1,-2).unsqueeze(-1) y = self.sigmoid(y) return x * y.expand_as(x) class ImageDenoising(nn.Module): def init(self): super().init() self.model = eca_Resnet50() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(64, 3, kernel_size=3, stride=1, padding=1) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) return x,使最后输出为[16,1,50,50,]。

import os from PyQt5.QtCore import Qt from PyQt5.QtGui import QPixmap, QIcon from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QVBoxLayout, QHBoxLayout, QTreeView, QFileSystemModel class ImageViewer(QWidget): def init(self, folder_path): super().init() self.folder_path = folder_path self.image_dict = {} self.current_image = None self.setWindowTitle("Image Viewer") self.setFixedSize(1000, 600) self.image_label = QLabel(self) self.image_label.setAlignment(Qt.AlignCenter) self.tree_view = QTreeView() self.tree_view.setMinimumWidth(250) self.tree_view.setMaximumWidth(250) self.model = QFileSystemModel() self.model.setRootPath(folder_path) self.tree_view.setModel(self.model) self.tree_view.setRootIndex(self.model.index(folder_path)) self.tree_view.setHeaderHidden(True) self.tree_view.setColumnHidden(1, True) self.tree_view.setColumnHidden(2, True) self.tree_view.setColumnHidden(3, True) self.tree_view.doubleClicked.connect(self.tree_item_double_clicked) self.main_layout = QHBoxLayout(self) self.main_layout.addWidget(self.tree_view) self.main_layout.addWidget(self.image_label) self.load_images() self.update_image() def load_images(self): for file_name in os.listdir(self.folder_path): if file_name.lower().endswith((".jpg", ".jpeg", ".png", ".gif", ".bmp")): file_path = os.path.join(self.folder_path, file_name) self.image_dict[file_name] = file_path current_image = list(self.image_dict.keys())[0] def update_image(self): if self.current_image is not None: pixmap = QPixmap(self.image_dict[self.current_image]) self.image_label.setPixmap(pixmap.scaled(self.width() - self.tree_view.width(), self.height(), Qt.KeepAspectRatio, Qt.SmoothTransformation)) def tree_item_double_clicked(self, index): file_name = self.model.fileName(index) if file_name in self.image_dict: self.current_image = file_name self.update_image() def keyPressEvent(self, event): if event.key() == Qt.Key_A: self.previous_image() elif event.key() == Qt.Key_D: self.next_image() elif event.key() in [Qt.Key_1, Qt.Key_2, Qt.Key_3, Qt.Key_4, Qt.Key_5]: self.save_text_file(event.key() - Qt.Key_0) def previous_image(self): if self.current_image is not None: file_names = list(self.image_dict.keys()) current_index = file_names.index(self.current_image) if current_index > 0: self.current_image = file_names[current_index - 1] else: self.current_image = file_names[-1] self.update_image() def next_image(self): if self.current_image is not None: file_names = list(self.image_dict.keys()) current_index = file_names.index(self.current_image) if current_index < len(file_names) - 1: self.current_image = file_names[current_index + 1] else: self.current_image = file_names[0] self.update_image() def save_text_file(self, number): if self.current_image is not None: file_name = self.current_image txt_file_path = os.path.join(self.folder_path, os.path.splitext(file_name)[0] + ".txt") with open(txt_file_path, "w") as file: file.write(str(number)) if name == "main": import sys app = QApplication(sys.argv) viewer = ImageViewer("D:/图片/wallpaper") viewer.show() sys.exit(app.exec_())这份代码实现不了使用键盘的A键向上翻页以及D键向下翻页,也实现不了键盘数字键生成相应txt文档,帮我分析一下错在哪里

这段代码中加一个test loss功能 class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size, device): super().__init__() self.device = device self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.num_directions = 1 # 单向LSTM self.batch_size = batch_size self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True) self.linear = nn.Linear(65536, self.output_size) def forward(self, input_seq): h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) output, _ = self.lstm(input_seq, (h_0, c_0)) pred = self.linear(output.contiguous().view(self.batch_size, -1)) return pred if __name__ == '__main__': # 加载已保存的模型参数 saved_model_path = '/content/drive/MyDrive/危急值/model/dangerous.pth' device = 'cuda:0' lstm_model = LSTM(input_size=1, hidden_size=64, num_layers=1, output_size=3, batch_size=256, device='cuda:0').to(device) state_dict = torch.load(saved_model_path) lstm_model.load_state_dict(state_dict) dataset = ECGDataset(X_train_df.to_numpy()) dataloader = DataLoader(dataset, batch_size=256, shuffle=True, num_workers=0, drop_last=True) loss_fn = nn.CrossEntropyLoss() optimizer = optim.SGD(lstm_model.parameters(), lr=1e-4) for epoch in range(200000): print(f'epoch:{epoch}') lstm_model.train() epoch_bar = tqdm(dataloader) for x, y in epoch_bar: optimizer.zero_grad() x_out = lstm_model(x.to(device).type(torch.cuda.FloatTensor)) loss = loss_fn(x_out, y.long().to(device)) loss.backward() epoch_bar.set_description(f'loss:{loss.item():.4f}') optimizer.step() if epoch % 100 == 0 or epoch == epoch - 1: torch.save(lstm_model.state_dict(), "/content/drive/MyDrive/危急值/model/dangerous.pth") print("权重成功保存一次")

最新推荐

recommend-type

工业AI视觉检测解决方案.pptx

工业AI视觉检测解决方案.pptx是一个关于人工智能在工业领域的具体应用,特别是针对视觉检测的深入探讨。该报告首先回顾了人工智能的发展历程,从起步阶段的人工智能任务失败,到专家系统的兴起到深度学习和大数据的推动,展示了人工智能从理论研究到实际应用的逐步成熟过程。 1. 市场背景: - 人工智能经历了从计算智能(基于规则和符号推理)到感知智能(通过传感器收集数据)再到认知智能(理解复杂情境)的发展。《中国制造2025》政策强调了智能制造的重要性,指出新一代信息技术与制造技术的融合是关键,而机器视觉因其精度和效率的优势,在智能制造中扮演着核心角色。 - 随着中国老龄化问题加剧和劳动力成本上升,以及制造业转型升级的需求,机器视觉在汽车、食品饮料、医药等行业的渗透率有望提升。 2. 行业分布与应用: - 国内市场中,电子行业是机器视觉的主要应用领域,而汽车、食品饮料等其他行业的渗透率仍有增长空间。海外市场则以汽车和电子行业为主。 - 然而,实际的工业制造环境中,由于产品种类繁多、生产线场景各异、生产周期不一,以及标准化和个性化需求的矛盾,工业AI视觉检测的落地面临挑战。缺乏统一的标准和模型定义,使得定制化的解决方案成为必要。 3. 工业化前提条件: - 要实现工业AI视觉的广泛应用,必须克服标准缺失、场景多样性、设备技术不统一等问题。理想情况下,应有明确的需求定义、稳定的场景设置、统一的检测标准和安装方式,但现实中这些条件往往难以满足,需要通过技术创新来适应不断变化的需求。 4. 行业案例分析: - 如金属制造业、汽车制造业、PCB制造业和消费电子等行业,每个行业的检测需求和设备技术选择都有所不同,因此,解决方案需要具备跨行业的灵活性,同时兼顾个性化需求。 总结来说,工业AI视觉检测解决方案.pptx着重于阐述了人工智能如何在工业制造中找到应用场景,面临的挑战,以及如何通过标准化和技术创新来推进其在实际生产中的落地。理解这个解决方案,企业可以更好地规划AI投入,优化生产流程,提升产品质量和效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MySQL运维最佳实践:经验总结与建议

![MySQL运维最佳实践:经验总结与建议](https://ucc.alicdn.com/pic/developer-ecology/2eb1709bbb6545aa8ffb3c9d655d9a0d.png?x-oss-process=image/resize,s_500,m_lfit) # 1. MySQL运维基础** MySQL运维是一项复杂而重要的任务,需要深入了解数据库技术和最佳实践。本章将介绍MySQL运维的基础知识,包括: - **MySQL架构和组件:**了解MySQL的架构和主要组件,包括服务器、客户端和存储引擎。 - **MySQL安装和配置:**涵盖MySQL的安装过
recommend-type

stata面板数据画图

Stata是一个统计分析软件,可以用来进行数据分析、数据可视化等工作。在Stata中,面板数据是一种特殊类型的数据,它包含了多个时间段和多个个体的数据。面板数据画图可以用来展示数据的趋势和变化,同时也可以用来比较不同个体之间的差异。 在Stata中,面板数据画图有很多种方法。以下是其中一些常见的方法
recommend-type

智慧医院信息化建设规划及愿景解决方案.pptx

"智慧医院信息化建设规划及愿景解决方案.pptx" 在当今信息化时代,智慧医院的建设已经成为提升医疗服务质量和效率的重要途径。本方案旨在探讨智慧医院信息化建设的背景、规划与愿景,以满足"健康中国2030"的战略目标。其中,"健康中国2030"规划纲要强调了人民健康的重要性,提出了一系列举措,如普及健康生活、优化健康服务、完善健康保障等,旨在打造以人民健康为中心的卫生与健康工作体系。 在建设背景方面,智慧医院的发展受到诸如分级诊疗制度、家庭医生签约服务、慢性病防治和远程医疗服务等政策的驱动。分级诊疗政策旨在优化医疗资源配置,提高基层医疗服务能力,通过家庭医生签约服务,确保每个家庭都能获得及时有效的医疗服务。同时,慢性病防治体系的建立和远程医疗服务的推广,有助于减少疾病发生,实现疾病的早诊早治。 在规划与愿景部分,智慧医院的信息化建设包括构建完善的电子健康档案系统、健康卡服务、远程医疗平台以及优化的分级诊疗流程。电子健康档案将记录每位居民的动态健康状况,便于医生进行个性化诊疗;健康卡则集成了各类医疗服务功能,方便患者就医;远程医疗技术可以跨越地域限制,使优质医疗资源下沉到基层;分级诊疗制度通过优化医疗结构,使得患者能在合适的层级医疗机构得到恰当的治疗。 在建设内容与预算方面,可能涉及硬件设施升级(如医疗设备智能化)、软件系统开发(如电子病历系统、预约挂号平台)、网络基础设施建设(如高速互联网接入)、数据安全与隐私保护措施、人员培训与技术支持等多个方面。预算应考虑项目周期、技术复杂性、维护成本等因素,以确保项目的可持续性和效益最大化。 此外,"互联网+医疗健康"的政策支持鼓励创新,智慧医院信息化建设还需要结合移动互联网、大数据、人工智能等先进技术,提升医疗服务的便捷性和精准度。例如,利用AI辅助诊断、物联网技术监控患者健康状态、区块链技术保障医疗数据的安全共享等。 智慧医院信息化建设是一项系统工程,需要政府、医疗机构、技术供应商和社会各方共同参与,以实现医疗服务质量的提升、医疗资源的优化配置,以及全民健康水平的提高。在2023年的背景下,这一进程将进一步加速,为我国的医疗健康事业带来深远影响。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MySQL监控与预警:故障预防与快速响应

![MySQL监控与预警:故障预防与快速响应](https://www.tingyun.com/wp-content/uploads/2024/01/%E5%9F%BA%E8%B0%831-6.png) # 1. MySQL监控概述** MySQL监控是确保数据库系统稳定、高效运行的关键实践。通过监控,DBA可以及时发现并解决性能瓶颈、故障隐患,从而保障业务的正常运行。 MySQL监控涵盖了对系统、数据库和SQL层面的全面监控。它包括收集和分析各种性能指标,如CPU利用率、内存使用率、查询执行时间等,以了解数据库的运行状况。通过监控,DBA可以及时发现性能下降、资源瓶颈和异常行为,并采取措
recommend-type

C语言MAKEU32函数

C语言中的MAKEU32函数用于将4个8位的字节转换为一个32位的无符号整数。该函数通常被用于网络编程、位操作等领域。 MAKEU32函数的实现方式如下: ```c unsigned int MAKEU32(unsigned char a, unsigned char b, unsigned char c, unsigned char d) { return ((unsigned int)a << 24) | ((unsigned int)b << 16) | ((unsigned int)c << 8) | (unsigned int)d; } ``` 该函数接收4个8位的字节
recommend-type

智慧医院信息化+智能化系统建设方案.pptx

"该文件是关于2023年的智慧医院信息化与智能化系统建设方案,由郎丰利制作。方案涵盖了智慧医疗、智慧服务和智慧管理三大领域,旨在通过先进的信息技术提升医院的服务质量和效率。方案涉及到医院信息化的多个层面,包括应用层、展现层、支撑层、网络层等,并提出了智慧医疗、智慧管理和智慧服务的具体应用系统和组件。此外,还关注了安全防范和楼宇自动化等基础设施,以及综合运维管理平台的构建。" 智慧医院的建设方案涉及了以下几个核心知识点: 1. **智慧医院定义**:智慧医院是指拥有感知、分析、决策等多种能力的医院,能够根据各方需求提供智能化服务。它包含面向医务人员的“智慧医疗”、面向患者的“智慧服务”和面向医院管理的“智慧管理”。 2. **智慧医疗**:包括门急诊医生站、住院医生站、移动护士站、电子病历、药品订单、检验服务、支付服务、远程协同、检查服务等组件,实现临床诊疗的数字化和远程化。 3. **智慧服务**:涵盖患者就诊全流程,如健康码闸机、安防监控、日间手术系统、停车场管理、患者随访系统等,提高患者就医体验。 4. **智慧管理**:通过监测预警、辅助决策、数据大屏集中展现等手段优化医院运营,包括远程会诊、双向转诊、远程心电系统等,提升医疗服务效率。 5. **技术架构**:智慧医院的架构分为应用层、展现层、支撑层、网络层,其中数据中台和业务中台是关键,负责数据的统一接入、存储、治理和服务。 6. **基础设施**:包括安全防范系统(如视频监控、报警、巡查等)、楼宇设备控制系统(如空调、照明、漏水监测等)、能源计量和综合集成系统,确保医院安全和运行效率。 7. **综合运维管理平台**:整合所有系统的运维管理,确保整体系统的稳定性和安全性。 8. **设计理念**:智慧医院设计遵循顶层设计,注重系统间的整合和联动,以实现全方位的智能化。 9. **5G应用**:5G技术在手术示教、远程指导、医疗数据传输等方面发挥重要作用,提高医疗服务的实时性和远程可达性。 此方案全面描绘了智慧医院的蓝图,旨在通过信息化和智能化手段提升医疗服务的质量、安全和效率,推动医疗行业的现代化进程。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩