class DepressionDiagnosisModel(nn.Module): def __init__(self, num_classes): super(DepressionDiagnosisModel, self).__init__() self.num_classes = num_classes self.features = nn.Sequential( # 定义模型的特征提取部分 ) self.classifier = nn.Sequential( # 定义模型的分类器部分 ) self.old_model = None self.old_classes = 0
时间: 2024-02-14 11:21:43 浏览: 203
这段代码定义了一个名为 "DepressionDiagnosisModel" 的类,继承自 PyTorch 的 nn.Module 类。该类的构造函数接受一个参数 "num_classes",表示分类任务的类别数。在构造函数中,首先调用父类构造函数初始化模型,然后定义了三个成员变量:
- self.num_classes:表示分类任务的类别数。
- self.features:是一个 nn.Sequential 对象,用于定义模型的特征提取部分,可以由多个 nn.Module 组成。
- self.classifier:也是一个 nn.Sequential 对象,用于定义模型的分类器部分,可以由多个 nn.Module 组成。
同时,还定义了两个成员变量,分别是 self.old_model 和 self.old_classes,用于存储模型在增量学习中旧模型和旧类别的信息。
相关问题
class NormedLinear(nn.Module): def __init__(self, feat_dim, num_classes): super().__init__() self.weight = nn.Parameter(torch.Tensor(feat_dim, num_classes)) self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5) def forward(self, x): return F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0)) class LearnableWeightScalingLinear(nn.Module): def __init__(self, feat_dim, num_classes, use_norm=False): super().__init__() self.classifier = NormedLinear(feat_dim, num_classes) if use_norm else nn.Linear(feat_dim, num_classes) self.learned_norm = nn.Parameter(torch.ones(1, num_classes)) def forward(self, x): return self.classifier(x) * self.learned_norm class DisAlignLinear(nn.Module): def __init__(self, feat_dim, num_classes, use_norm=False): super().__init__() self.classifier = NormedLinear(feat_dim, num_classes) if use_norm else nn.Linear(feat_dim, num_classes) self.learned_magnitude = nn.Parameter(torch.ones(1, num_classes)) self.learned_margin = nn.Parameter(torch.zeros(1, num_classes)) self.confidence_layer = nn.Linear(feat_dim, 1) torch.nn.init.constant_(self.confidence_layer.weight, 0.1) def forward(self, x): output = self.classifier(x) confidence = self.confidence_layer(x).sigmoid() return (1 + confidence * self.learned_magnitude) * output + confidence * self.learned_margin class MLP_ConClassfier(nn.Module): def __init__(self): super(MLP_ConClassfier, self).__init__() self.num_inputs, self.num_hiddens_1, self.num_hiddens_2, self.num_hiddens_3, self.num_outputs \ = 41, 512, 128, 32, 5 self.num_proj_hidden = 32 self.mlp_conclassfier = nn.Sequential( nn.Linear(self.num_inputs, self.num_hiddens_1), nn.ReLU(), nn.Linear(self.num_hiddens_1, self.num_hiddens_2), nn.ReLU(), nn.Linear(self.num_hiddens_2, self.num_hiddens_3), ) self.fc1 = torch.nn.Linear(self.num_hiddens_3, self.num_proj_hidden) self.fc2 = torch.nn.Linear(self.num_proj_hidden, self.num_hiddens_3) self.linearclassfier = nn.Linear(self.num_hiddens_3, self.num_outputs) self.NormedLinearclassfier = NormedLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs) self.DisAlignLinearclassfier = DisAlignLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs, use_norm=True) self.LearnableWeightScalingLinearclassfier = LearnableWeightScalingLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs, use_norm=True)
这段代码定义了一个名为MLP_ConClassfier的神经网络模型,它包含了多个子模块,包括三个不同的分类器:NormedLinearclassfier、DisAlignLinearclassfier和LearnableWeightScalingLinearclassfier。这些分类器都是基于输入特征进行分类的,并且使用不同的方法来实现分类功能。此外,该模型还包含了一个MLP网络,用于将输入特征映射到更高维的特征空间中。该模型的输入特征维度为41,输出类别数为5。
class ResNetRGBD(nn.Module): def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None): super(ResNetRGBD, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1
这是一个 PyTorch 中的 ResNetRGBD 模型类的定义,它继承自 nn.Module 类。在初始化函数 `__init__` 中,它接受以下参数:
- `block`:ResNet 中残差块的类(比如 BasicBlock 或 Bottleneck)。
- `layers`:一个列表,表示每个残差块堆叠的数量。
- `num_classes`:输出类别的数量。
- `zero_init_residual`:是否使用零初始化残差块的权重。
- `groups`:分组卷积中的组数。
- `width_per_group`:每个组的通道数。
- `replace_stride_with_dilation`:是否使用空洞卷积代替步幅卷积来降低下采样率。
- `norm_layer`:归一化层的类型(比如 BatchNorm2d 或 GroupNorm)。
其中,`self._norm_layer` 表示使用的归一化层,`self.inplanes` 表示当前的通道数,`self.dilation` 表示当前的空洞率。
阅读全文