def __init__(self, pretrained=False): super(Resnet18Triplet, self).__init__() self.model = resnet18(pretrained=pretrained) # Output self.input_features_fc_layer = self.model.fc.in_features self.model.fc = common_functions.Identity() def forward(self, images): """Forward pass to output the embedding vector (feature vector) after l2-normalization.""" embedding = self.model(images) return embedding
时间: 2024-04-06 19:29:46 浏览: 52
keras读取h5文件load_weights、load代码操作
这段代码是一个PyTorch模型的定义,使用ResNet-18作为backbone,在此基础上构建一个面向triplet loss的模型。其中,`__init__`方法中使用`resnet18`函数加载预训练的ResNet-18模型,并将最后的全连接层替换成一个空白的Identity层。`forward`方法中,输入一张图片,通过模型的计算,输出该图片的特征向量,并经过L2标准化后返回。这个特征向量可以用于计算triplet loss。
阅读全文