帮我修改以下代码,使他们可以正确运行:library(ggplot2) library(gridExtra) ggplot(df, aes(x = x, y = y, color = z)) + geom_point() p1 <- ggplot(subset(df, z == 'a'), aes(x = x, y = y)) + geom_point(color = 'black') p2 <- ggplot(subset(df, z == 'b'), aes(x = x, y = y)) + geom_point(color = 'black') p3 <- ggplot(subset(df, z == 'c'), aes(x = x, y = y)) + geom_point(color = 'black') grid.arrange(p1, p2, p3, ncol = 3) centroids <- aggregate(df[, c('x', 'y')], by = list(df$z), FUN = mean) names(centroids)[1] <- 'z' p1 <- ggplot(df, aes(x = x, y = y)) + geom_point(aes(color = z)) + geom_point(data = subset(centroids, z == 'a'), aes(x = x, y = y, color = z), size = 4) p2 <- ggplot(df, aes(x = x, y = y)) + geom_point(aes(color = z)) + geom_point(data = subset(centroids, z == 'b'), aes(x = x, y = y, color = z), size = 4) p3 <- ggplot(df, aes(x = x, y = y)) + geom_point(aes(color = z)) + geom_point(data = subset(centroids, z == 'c'), aes(x = x, y = y, color = z), size = 4) grid.arrange(p1, p2, p3, ncol = 3) p1 <- ggplot(df, aes(x = x, y = y)) + geom_point(data = subset(df, z == 'a'), aes(color = z)) + geom_point(data = subset(df, z != 'a'), color = 'grey70') p2 <- ggplot(df, aes(x = x, y = y)) + geom_point(data = subset(df, z == 'b'), aes(color = z)) + geom_point(data = subset(df, z != 'b'), color = 'grey70') p3 <- ggplot(df, aes(x = x, y = y)) + geom_point(data = subset(df, z == 'c'), aes(color = z)) + geom_point(data = subset(df, z != 'c'), color = 'grey70') grid.arrange(p1, p2, p3, ncol = 3)
时间: 2023-12-16 12:03:01 浏览: 129
在运行这段代码之前,需要先定义和载入数据框 df。如果数据框 df 中没有 x、y 和 z 这三列数据,那么这段代码将无法正确运行。因此,需要先确保 df 中包含这三列数据。
以下是修改后的代码:
```
library(ggplot2)
library(gridExtra)
# 绘制散点图
ggplot(df, aes(x = x, y = y, color = z)) + geom_point()
# 按照 z 的不同取值绘制三幅散点图,并排显示
p1 <- ggplot(subset(df, z == 'a'), aes(x = x, y = y)) + geom_point(color = 'black')
p2 <- ggplot(subset(df, z == 'b'), aes(x = x, y = y)) + geom_point(color = 'black')
p3 <- ggplot(subset(df, z == 'c'), aes(x = x, y = y)) + geom_point(color = 'black')
grid.arrange(p1, p2, p3, ncol = 3)
# 计算每个 z 取值对应的 x 和 y 的均值,作为聚类中心
centroids <- aggregate(df[, c('x', 'y')], by = list(df$z), FUN = mean)
names(centroids)[1] <- 'z'
# 绘制带有聚类中心的散点图
p1 <- ggplot(df, aes(x = x, y = y)) +
geom_point(aes(color = z)) +
geom_point(data = subset(centroids, z == 'a'), aes(x = x, y = y, color = z), size = 4)
p2 <- ggplot(df, aes(x = x, y = y)) +
geom_point(aes(color = z)) +
geom_point(data = subset(centroids, z == 'b'), aes(x = x, y = y, color = z), size = 4)
p3 <- ggplot(df, aes(x = x, y = y)) +
geom_point(aes(color = z)) +
geom_point(data = subset(centroids, z == 'c'), aes(x = x, y = y, color = z), size = 4)
grid.arrange(p1, p2, p3, ncol = 3)
# 绘制带有灰色散点的散点图,用于显示不同 z 取值之间的边界
p1 <- ggplot(df, aes(x = x, y = y)) +
geom_point(data = subset(df, z == 'a'), aes(color = z)) +
geom_point(data = subset(df, z != 'a'), color = 'grey70')
p2 <- ggplot(df, aes(x = x, y = y)) +
geom_point(data = subset(df, z == 'b'), aes(color = z)) +
geom_point(data = subset(df, z != 'b'), color = 'grey70')
p3 <- ggplot(df, aes(x = x, y = y)) +
geom_point(data = subset(df, z == 'c'), aes(color = z)) +
geom_point(data = subset(df, z != 'c'), color = 'grey70')
grid.arrange(p1, p2, p3, ncol = 3)
```
阅读全文