char * 怎么转换为 char sz[]

时间: 2023-02-02 10:15:00 浏览: 87
字符指针可以通过遍历字符数组并复制元素来转换为字符数组,代码示例如下: ``` void convert(char *str, char sz[]) { int i; for (i = 0; str[i] != '\0'; i++) { sz[i] = str[i]; } sz[i] = '\0'; } ``` 此外,可以使用`strcpy`函数: ``` strcpy(sz, str); ```
相关问题

void my_copy(volatile unsigned char *dst, volatile unsigned char *src, int sz) { if (sz & 63) { sz = (sz & -64) + 64; } asm volatile( "NEONCopyPLD: \n" " VLDM %[src]!,{d0-d7} \n" " VSTM %[dst]!,{d0-d7} \n" " SUBS %[sz],%[sz],#0x40 \n" " BGT NEONCopyPLD \n" : [dst] "+r"(dst), [src] "+r"(src), [sz] "+r"(sz)::"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "cc", "memory"); }优化这段代码使其能够更快的读写数据

这段代码是一个用于在ARM架构上进行大块数据复制的函数。为了优化这段代码,我们可以考虑以下几点: 1. 使用NEON指令集加速数据复制:NEON指令集是ARM架构上的SIMD指令集,可以对多个数据进行并行处理。我们可以使用NEON指令集来加速数据复制。 2. 使用预取指令优化数据读取:预取指令可以让CPU提前将数据从内存中加载到缓存中,加速后续的数据读取操作。 3. 减少分支语句的使用:分支语句会降低代码的执行效率,可以尝试减少分支语句的使用来提高代码的性能。 下面是经过优化后的代码: ``` void my_copy(volatile unsigned char *dst, volatile unsigned char *src, int sz) { int sz_neon = sz & -64; int sz_remainder = sz & 63; asm volatile( "NEONCopyPLD: \n" " PLD [%[src], #256] \n" " VLD1.8 {d0-d7}, [%[src] :64]! \n" " VST1.8 {d0-d7}, [%[dst] :64]! \n" " SUBS %[sz], %[sz], #64 \n" " BGT NEONCopyPLD \n" "NEONCopyRemainder: \n" " CMP %[sz_remainder], #0 \n" " BEQ NEONCopyFinish \n" " PLD [%[src], #64] \n" " VLD1.8 {d0-d1}, [%[src]] \n" " VST1.8 {d0-d1}, [%[dst]] \n" "NEONCopyFinish: \n" : [dst] "+r" (dst), [src] "+r" (src), [sz] "+r" (sz), [sz_remainder] "+r" (sz_remainder) : : "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "cc", "memory" ); } ``` 这段代码首先将需要复制的数据分成大小为64字节的块和不足64字节的余数两部分。对于大小为64字节的块,我们使用NEON指令集进行并行的读写操作,并使用预取指令提前将数据从内存中加载到缓存中。对于不足64字节的余数部分,我们使用普通的指令进行读写操作。通过这些优化,可以加速数据的读写操作,提高代码的性能。

mfc中,如何将cstring转成char

### 回答1: 在MFC中,可以使用`CString`类的`GetBuffer`函数将`CString`对象转换为`char`指针类型。以下是一个简单的示例: ``` CString str = _T("Hello, world!"); // CString对象 char* sz = str.GetBuffer(str.GetLength()); // 转换为char指针类型 ``` 需要注意的是,在使用完`sz`指针后,需要调用`ReleaseBuffer`函数来释放`CString`对象内部缓冲区,否则可能会导致内存泄漏。以下是完整示例代码: ``` CString str = _T("Hello, world!"); // CString对象 char* sz = str.GetBuffer(str.GetLength()); // 转换为char指针类型 // 使用sz指针处理数据 ... // 释放缓冲区 str.ReleaseBuffer(); ``` ### 回答2: 在MFC中,可以通过CString类提供的GetBuffer方法将CString对象转换为char*类型。 具体操作步骤如下: 1. 首先,使用CString类的GetBuffer方法获取CString对象的char*缓冲区指针。 ```cpp CString str = _T("Hello, World!"); char* pBuffer = str.GetBuffer(0); ``` 此处传入的参数0表示需要获取整个CString对象的缓冲区指针。 2. 接下来,可以像使用char*类型一样操作pBuffer缓冲区指针了。 ```cpp // 打印CString对象的内容 printf("%s\n", pBuffer); // 将CString对象转换为char数组 char arr[100]; strcpy_s(arr, 100, pBuffer); // 使用CString对象的内容进行其他操作 // ... ``` 可以使用标准库函数(例如strcpy、sprintf等)或自定义方法对pBuffer进行进一步处理。 3. 最后,使用CString类的ReleaseBuffer方法释放缓冲区。 ```cpp str.ReleaseBuffer(); ``` 释放缓冲区后,CString对象将恢复原来的状态。 需要注意的是,在获取CString对象的缓冲区指针后,对CString对象进行任何修改都可能导致缓冲区发生变化。因此,在处理完转换后的char*指针后,应尽快调用ReleaseBuffer方法释放缓冲区,避免不必要的错误和内存泄漏。 ### 回答3: 在MFC中,可以通过CString类的GetBuffer()函数来获取char类型的指针,从而将CString转换为char类型。 具体步骤如下: 首先,定义一个CString对象,例如CString str; 然后,使用str.GetBuffer()函数获取char类型的指针,例如char* charStr = str.GetBuffer(str.GetLength()); 最后,可以通过charStr指针来访问和处理CString中的字符数据。 需要注意的是,通过GetBuffer()函数获得的char类型指针只能在调用ReleaseBuffer()函数之前使用,并且对于已经调用过GetBuffer()函数的CString对象,必须调用ReleaseBuffer()函数来释放缓冲区,否则会造成内存泄漏。 例如,完整的示例代码如下: ```cpp #include <iostream> #include <afx.h> int main() { CString str = "这是一个CString字符串"; char* charStr = str.GetBuffer(str.GetLength()); // 使用charStr指针来访问和处理CString中的字符数据 std::cout << charStr << std::endl; // 释放缓冲区 str.ReleaseBuffer(); return 0; } ``` 上述代码中,CString对象str中包含了一个中文字符串,通过GetBuffer()函数将其转换为char类型指针charStr,并通过cout打印出来。最后,通过ReleaseBuffer()函数释放缓冲区。

相关推荐

#include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <arpa/inet.h> #include <sys/socket.h> #define BUF_SIZE 1024 #define OPSZ 4 void error_handling(char *message); int calculate(int opnum, int opnds[], char oprator); int main(int argc, char *argv[]) { int serv_sock, clnt_sock; char opinfo[BUF_SIZE]; int result, opnd_cnt, i; int recv_cnt, recv_len; struct sockaddr_in serv_adr, clnt_adr; socklen_t clnt_adr_sz; if(argc!=2) { printf("Usage : %s \n", argv[0]); exit(1); } serv_sock=socket(PF_INET, SOCK_STREAM, 0); if(serv_sock==-1) error_handling("socket() error"); memset(&serv_adr, 0, sizeof(serv_adr)); serv_adr.sin_family=AF_INET; serv_adr.sin_addr.s_addr=htonl(INADDR_ANY); serv_adr.sin_port=htons(atoi(argv[1])); if(bind(serv_sock, (struct sockaddr*)&serv_adr, sizeof(serv_adr))==-1) error_handling("bind() error"); if(listen(serv_sock, 5)==-1) error_handling("listen() error"); clnt_adr_sz=sizeof(clnt_adr); for(i=0; i<5; i++) { opnd_cnt=0; clnt_sock=accept(serv_sock, (struct sockaddr*)&clnt_adr, &clnt_adr_sz); read(clnt_sock, &opnd_cnt, 1); recv_len=0; while((opnd_cnt*OPSZ+1)>recv_len) { recv_cnt=read(clnt_sock, &opinfo[recv_len], BUF_SIZE-1); recv_len+=recv_cnt; } result=calculate(opnd_cnt, (int*)opinfo, opinfo[recv_len-1]); write(clnt_sock, (char*)&result, sizeof(result)); close(clnt_sock); } close(serv_sock); return 0; } int calculate(int opnum, int opnds[], char op) { int result=opnds[0], i; switch(op) { case '+': for(i=1; i<opnum; i++) result+=opnds[i]; break; case '-': for(i=1; i<opnum; i++) result-=opnds[i]; break; case '*': for(i=1; i<opnum; i++) result*=opnds[i]; break; } return result; } void error_handling(char *message) { fputs(message, stderr); fputc('\n', stderr); exit(1); } 对每行代码进行解释

#include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <arpa/inet.h> #include <sys/socket.h> #define BUF_SIZE 1024 #define OPSZ 4 void error_handling(char message); int calculate(int opnum, int opnds[], char oprator); int main(int argc, char argv[]) { int serv_sock, clnt_sock; char opinfo[BUF_SIZE]; int result, opnd_cnt, i; int recv_cnt, recv_len; struct sockaddr_in serv_adr, clnt_adr; socklen_t clnt_adr_sz; if(argc!=2) { printf("Usage : %s \n", argv[0]); exit(1); } serv_sock=socket(PF_INET, SOCK_STREAM, 0); if(serv_sock==-1) error_handling("socket() error"); memset(&serv_adr, 0, sizeof(serv_adr)); serv_adr.sin_family=AF_INET; serv_adr.sin_addr.s_addr=htonl(INADDR_ANY); serv_adr.sin_port=htons(atoi(argv[1])); if(bind(serv_sock, (struct sockaddr)&serv_adr, sizeof(serv_adr))==-1) error_handling("bind() error"); if(listen(serv_sock, 5)==-1) error_handling("listen() error"); clnt_adr_sz=sizeof(clnt_adr); for(i=0; i<5; i++) { opnd_cnt=0; clnt_sock=accept(serv_sock, (struct sockaddr)&clnt_adr, &clnt_adr_sz); read(clnt_sock, &opnd_cnt, 1); recv_len=0; while((opnd_cntOPSZ+1)>recv_len) { recv_cnt=read(clnt_sock, &opinfo[recv_len], BUF_SIZE-1); recv_len+=recv_cnt; } result=calculate(opnd_cnt, (int)opinfo, opinfo[recv_len-1]); write(clnt_sock, (char*)&result, sizeof(result)); close(clnt_sock); } close(serv_sock); return 0; } int calculate(int opnum, int opnds[], char op) { int result=opnds[0], i; switch(op) { case '+': for(i=1; i<opnum; i++) result+=opnds[i]; break; case '-': for(i=1; i<opnum; i++) result-=opnds[i]; break; case '': for(i=1; i<opnum; i++) result=opnds[i]; break; } return result; } void error_handling(char *message) { fputs(message, stderr); fputc('\n', stderr); exit(1); } 对每行代码给出详细解释

1、理解下面的动态数组类模板,它由一系列位置连续、任意数量相同类型的元素组成,其元素个数可在程序运行时改变,并完成该类中没有完成的成员函数(不允许改变已有代码),并设计主函数,实现对该模板类的功能测试。 #include <iostream> using namespace std; #include <stdlib.h> //容错处理 enum ErrorType { invalidArraySize, memoryAllocatetionError, indexOutOfRang }; char *errorMsg[] = { "Invalid array size", "Memory allocation error", "Invalid index" }; template <class T> class Array { private: T* alist; int size; void Error(ErrorType error) const;//输出错误信息 public: Array(int sz=50);//构造函数 Array(const Array<T>& X);//拷贝构造函数 ~Array(void);//析构函数 Array<T>& operator=(const Array<T>& rhs);//重载赋值运算符 T& operator[](int i);//重载下标运算符 int GetSize(void) const;//获取数组大小 void Resize(int sz);//重新设置数组大小 }; template <class T> Array<T>::Array(int sz) { if(sz <= 0) Error(invalidArraySize); size = sz; alist = new T[size]; if(alist == 0) Error(memoryAllocatetionError); } template <class T> Array<T>::Array(const Array<T>& X) { int n = X.size; size = n; alist = new T[n]; if(alist == 0) Error(memoryAllocatetionError); T* srcptr = X.alist; T* destptr = alist; while(n--) *destptr++ = *srcptr++; } template<class T> Array<T>::~Array() { delete[] alist; } template <class T> Array<T>& Array<T>::operator=(const Array<T> &rhs) { int n = rhs.size; if(size != n) { delete[] alist; alist = new T[n]; if(alist == 0) Error(memoryAllocatetionError); size = n; } T* destptr = alist; T* srcptr = rhs.alist; while(n--) *destptr++ = *srcptr++; return *this; } template<class T> T& Array<T>::operator[](int n) { if(n < 0 || n > size-1) Error(indexOutOfRang); return alist[n]; }

最新推荐

recommend-type

c++读取、写入、删除 注册表.doc

printf("REG_SZ 类型键值 DisplayName 的值为:%s.\n", szValue); } ``` 读取REG_BINARY类型键值Binary的值: ```c unsigned char binValue[MAX_PATH]; DWORD binType = REG_BINARY; DWORD binSize = MAX_PATH; if...
recommend-type

C++采用openfilename打开文件对话框用法实例

char szFileName[MAX_PATH] = {0}; OPENFILENAME openFileName = {0}; // 初始化OpenFileName结构 openFileName.lStructSize = sizeof(OPENFILENAME); openFileName.nMaxFile = MAX_PATH; openFileName....
recommend-type

Node.js实战:快速入门,全面解析

"Node.js即学即用是一本面向JavaScript和编程有一定基础的读者的入门书籍,旨在教授如何利用Node.js构建可扩展的互联网应用程序。本书详尽介绍了Node.js提供的API,同时深入探讨了服务器端事件驱动开发的关键概念,如并发连接处理、非阻塞I/O以及事件驱动编程。内容覆盖了对多种数据库和数据存储工具的支持,提供了Node.js API的实际使用示例。" 在Node.js的世界里,事件驱动模型是其核心特性之一。这种模型使得Node.js能够高效地处理大量并发连接,通过非阻塞I/O操作来提高性能。在本书中,读者将学习如何利用Node.js的异步编程能力来创建高性能的网络应用,这是Node.js在处理高并发场景时的一大优势。 Node.js的API涵盖了网络通信、文件系统操作、流处理等多个方面。例如,`http`模块用于创建HTTP服务器,`fs`模块提供了对文件系统的读写功能,而`stream`模块则支持数据的高效传输。书中会通过实例来展示如何使用这些API,帮助读者快速上手。 对于数据库和数据存储,Node.js有丰富的库支持,如MongoDB的`mongodb`模块、MySQL的`mysql`模块等。书中会讲解如何在Node.js应用中集成这些数据库,进行数据的增删改查操作,以及如何优化数据访问性能。 此外,本书还会介绍Node.js中的模块系统,包括内置模块和第三方模块的安装与使用,如使用`npm`(Node Package Manager)管理依赖。这使得开发者可以轻松地复用社区中的各种工具和库,加速开发进程。 《Node.js即学即用》是一本全面的实战指南,不仅适合初学者快速掌握Node.js的基础知识,也适合有一定经验的开发者深入理解Node.js的高级特性和最佳实践。通过阅读本书,读者不仅可以学习到Node.js的技术细节,还能了解到如何构建实际的、可扩展的网络应用。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

nginx配置中access_log指令的深入分析:日志记录和分析网站流量,提升网站运营效率

![nginx配置中access_log指令的深入分析:日志记录和分析网站流量,提升网站运营效率](https://img-blog.csdnimg.cn/img_convert/36fecb92e4eec12c90a33e453a31ac1c.png) # 1. nginx access_log指令概述** nginx 的 `access_log` 指令用于记录服务器处理客户端请求的信息。它可以生成日志文件,其中包含有关请求的详细信息,例如请求方法、请求 URI、响应状态代码和请求时间。这些日志对于分析网站流量、故障排除和性能优化至关重要。 `access_log` 指令的基本语法如下:
recommend-type

opencvsharp连接工业相机

OpenCVSharp是一个.NET版本的OpenCV库,它提供了一种方便的方式来在C#和Mono项目中使用OpenCV的功能。如果你想要连接工业相机并使用OpenCVSharp处理图像数据,可以按照以下步骤操作: 1. 安装OpenCVSharp:首先,你需要从GitHub或NuGet包管理器下载OpenCVSharp库,并将其添加到你的项目引用中。 2. 配置硬件支持:确保你的工业相机已安装了适当的驱动程序,并且与计算机有物理连接或通过网络相连。对于一些常见的工业相机接口,如USB、GigE Vision或V4L2,OpenCV通常能够识别它们。 3. 初始化设备:使用OpenCVS
recommend-type

张智教授详解Java入门资源:J2SE与J2ME/J2EE应用

本PPT教程由主讲教师张智精心制作,专为Java初学者设计,旨在快速提升学习者的Java编程入门能力,以应对各类考试需求。教程内容涵盖了Java的基础知识和实用技巧,从语言的历史背景和发展到核心特性。 1. **Java简介**: - Java起源于1990年由James Gosling领导的小组,原名Oak,目标是为家用电器编程,后来在1995年更名为Java。Java是一种平台无关、面向对象的语言,其特点包括:平台无关性,通过JVM实现跨平台;面向对象,强调代码重用;简单健壮,降低出错风险;解释性,源代码编译成字节码执行;分布式,支持网络通信;安全,防止非法操作;多线程,支持并发处理;动态性和可升级性;以及高性能。 2. **Java平台版本**: - Java有三个主要版本: - 微型版(J2ME):针对移动设备和嵌入式设备,如手机或IoT设备。 - 标准版(J2SE,Java SE):适用于桌面和服务器开发,涵盖了日常应用开发。 - 企业版(J2EE,Java EE):为企业级应用和Web应用设计,如企业级服务器和Web服务。 3. **Java环境配置**: - 要开始Java编程,首先需要下载Java JDK,如Java 8。然后配置Java环境变量,例如设置JAVA_HOME指向JDK安装路径,CLASSPATH用于指定类库搜索路径,以及添加JDK bin和jre bin到PATH中,以便执行Java命令。 4. **常用IDE工具**: - Eclipse是一款推荐使用的Java IDE,它提供了集成开发环境,便于代码编写、调试和测试。下载Eclipse后,通常直接解压安装即可。 整个教程围绕Java的核心概念展开,从基础语法讲解到实践项目,适合初学者系统地学习和巩固Java知识,无论是为了学术研究还是职业发展,都能提供有效的学习资源。通过本资源,初学者能够快速掌握Java编程,并为进一步深入学习和实战项目打下坚实基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

nginx配置中error_page指令的实战应用:自定义错误页面、提升用户体验,提升网站友好性

![nginx配置中error_page指令的实战应用:自定义错误页面、提升用户体验,提升网站友好性](https://i-blog.csdnimg.cn/blog_migrate/922682c45f8a00d03d9504300a3ade98.png) # 1. Nginx错误处理概述** Nginx作为一款高性能的Web服务器,提供了一系列错误处理机制,帮助管理员及时发现和处理服务器错误。其中,error_page指令是Nginx错误处理中的核心指令,它允许管理员自定义错误页面,为用户提供友好的错误提示,并帮助管理员快速定位和解决问题。 error_page指令的语法为: ```
recommend-type

stm32f103c8t6 tim3 pwm

STM32F103C8T6是一款基于ARM Cortex-M3内核的微控制器,它内置了TIM3(Timer 3)定时器模块。TIM3是一个高级定时器,支持PWM(脉冲宽度调制)功能,常用于控制电机速度、LED亮度等需要模拟信号的应用。 TIM3 PWM工作原理大致如下: 1. 配置TIM3:首先需要配置定时器的工作模式,比如计数模式或PWM模式,并设置预分频器(Prescaler)、周期长度、以及通道的极性、相位等。 2. 设置占空比:通过寄存器设置PWM的高电平时间(高周期)与低电平时间(低周期)的比例,也就是我们常说的 Duty Cycle。 3. 开始定时:启用TIM3的计数器,一旦到