把这段代码改成可以同时显示出20张%用训练好的网络识别图像类型 clc;clear; %Load the trained model load('MyNetwork','net'); %Read the image to classify [file,path]=uigetfile('*'); image=fullfile(path,file); Im=imresize(imread(image),[227,227]); file %Adjust size of the image sz=net.Layers(1).InputSize; Im=Im(1:sz(1),1:sz(2),1:sz(3)); %Classify images label=classify(net,Im) label=str2num(char(label))+1; %展示 imshow(Im)图片
时间: 2024-02-13 13:06:18 浏览: 64
离散Hopfield神经网络的联想记忆_数字识别_matlab
可以使用循环读取文件夹中的图片,进行分类和展示。以下是修改后的代码:
```
clc;
clear;
% Load the trained model
load('MyNetwork','net');
% Read the images to classify from a folder
folder_path = uigetdir(); % Select folder containing images to classify
image_files = dir(fullfile(folder_path, '*.jpg')); % Get all jpg images in folder
num_images = numel(image_files); % Number of images to classify
% Classify images and display
figure;
for i=1:num_images
% Read image
image_path = fullfile(folder_path, image_files(i).name);
Im = imresize(imread(image_path),[227,227]);
sz = net.Layers(1).InputSize;
Im = Im(1:sz(1),1:sz(2),1:sz(3));
% Classify image
label = classify(net,Im);
label = str2num(char(label))+1;
% Display image and label
subplot(4,5,i);
imshow(Im);
title(sprintf('Image %d: %d', i, label));
end
```
这段代码会在选择的文件夹中读取所有 `*.jpg` 图片,进行分类和展示。展示时,会在一个 4x5 的子图中显示每张图片的预测标签。
阅读全文