usart_clearitpendingbit函数 
时间: 2023-05-28 21:05:36 浏览: 284
USART_ClearITPendingBit函数是用于清除USART中断挂起位的函数。该函数的语法如下:
```c
void USART_ClearITPendingBit(USART_TypeDef* USARTx, uint16_t USART_IT)
```
其中,参数USARTx为USART外设指针,参数USART_IT为需要清除的中断类型,可以是以下常量之一:
- USART_IT_CTS:CTS中断挂起位
- USART_IT_LBD:LIN Break中断挂起位
- USART_IT_TC:发送完成中断挂起位
- USART_IT_RXNE:接收数据寄存器非空中断挂起位
- USART_IT_IDLE:空闲中断挂起位
- USART_IT_ORE:溢出错误中断挂起位
- USART_IT_NE:帧错误中断挂起位
- USART_IT_FE:奇偶校验错误中断挂起位
该函数会将指定的中断挂起位清零,以便下一次该中断发生时能够触发中断服务程序。如果不清零该中断挂起位,则会一直保持挂起状态,导致中断服务程序无法被触发。
相关问题
void uart6_init(void) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2,ENABLE); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Pin=GPIO_Pin_9|GPIO_Pin_10; GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz; //串口,数据传输,主要用于接收(接收函数) USART_InitTypeDef USART_InitStructure; USART_InitStructure.USART_BaudRate=115200; USART_InitStructure.USART_HardwareFlowControl=USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode=USART_Mode_Rx|USART_Mode_Tx; USART_InitStructure.USART_Parity=USART_Parity_No;//极性 USART_InitStructure.USART_StopBits=USART_StopBits_1;//停止位 USART_InitStructure.USART_WordLength=USART_WordLength_8b;//字节长度 USART_ITConfig(USART2,USART_IT_RXNE,ENABLE);//中断使能,接收缓冲器 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel=USART2_IRQn; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=1; NVIC_InitStructure.NVIC_IRQChannelSubPriority=1; GPIO_Init(GPIOA,&GPIO_InitStructure); NVIC_Init(&NVIC_InitStructure); USART_Init(USART2,&USART_InitStructure); USART_Cmd(USART2,ENABLE); } void USART2_IRQHandler(void) { if(USART_GetITStatus(USART2,USART_FLAG_RXNE)==SET) { } USART_ClearITPendingBit(USART2,USART_FLAG_RXNE); }
这段代码存在几个错误:
1. 在初始化时,使用了不正确的宏定义。函数 `RCC_APB2PeriphClockCmd()` 和 `RCC_APB1PeriphClockCmd()` 应该分别使用 `RCC_APB2PeriphClockCmd()` 和 `RCC_APB1PeriphClockCmd()` 来初始化 GPIOA 和 USART2 模块。
2. 在初始化 GPIO 时,使用了不正确的 GPIO 引脚。GPIO_Pin_9 和 GPIO_Pin_10 分别对应 USART1 的引脚 PA9 和 PA10,而不是 USART2 的引脚。因此,这些引脚需要更改为正确的引脚。
3. 在初始化 USART 时,使用了不正确的 USART 模块。应该将 `USART2` 改为 `USART1`,因为我们要初始化的是 USART1 模块。
4. 在中断处理函数 `USART2_IRQHandler()` 中,缺少接收数据的处理逻辑。你需要在中断处理函数中添加处理接收数据的代码。
最后,缺少返回值 `return 0;`。完整的代码如下:
```c
void uart6_init(void)
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10; // 已修正
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
USART_InitTypeDef USART_InitStructure;
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); // 已修正
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; // 已修正
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
GPIO_Init(GPIOA, &GPIO_InitStructure);
NVIC_Init(&NVIC_InitStructure);
USART_Init(USART1, &USART_InitStructure); // 已修正
USART_Cmd(USART1, ENABLE);
}
void USART1_IRQHandler(void) // 已修正
{
if (USART_GetITStatus(USART1, USART_IT_RXNE) == SET)
{
// 处理接收数据的代码
}
USART_ClearITPendingBit(USART1, USART_IT_RXNE);
}
```
这段代码初始化了 STM32 单片机的 USART1 模块,并添加了接收数据的中断处理函数。
GPIO_InitTypeDef GPIO_InitStructure;USART_InitTypeDef USART_InitStructure;// 初始化GPIO口RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;GPIO_Init(GPIOA, &GPIO_InitStructure);// 初始化串口RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);USART_InitStructure.USART_BaudRate = 115200;USART_InitStructure.USART_WordLength = USART_WordLength_8b;USART_InitStructure.USART_StopBits = USART_StopBits_1;USART_InitStructure.USART_Parity = USART_Parity_No;USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;USART_InitStructure.USART_Mode = USART_Mode_Tx;USART_Init(USART1, &USART_InitStructure);USART_Cmd(USART1, ENABLE);ADC_InitTypeDef ADC_InitStructure;TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;NVIC_InitTypeDef NVIC_InitStructure;// 初始化ADC模块RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;ADC_InitStructure.ADC_ScanConvMode = DISABLE;ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T3_TRGO;ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;ADC_InitStructure.ADC_NbrOfChannel = 1;ADC_Init(ADC1, &ADC_InitStructure);ADC_Cmd(ADC1, ENABLE);// 初始化定时器RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);TIM_TimeBaseStructure.TIM_Period = 72000000 / 1000 - 1; // 计数器自动重装值TIM_TimeBaseStructure.TIM_Prescaler = 72 - 1; // 分频系数TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; // 时钟分割TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; // 计数器向上计数TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);// 配置定时器触发ADC采样TIM_SelectOutputTrigger(TIM3, TIM_TRGOSource_Update);ADC_ExternalTrigConvCmd(ADC1, ENABLE);// 初始化定时器中断TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;NVIC_Init(&NVIC_InitStructure);void TIM3_IRQHandler(void) { if (TIM_GetITStatus(TIM3, TIM_IT_Update) != RESET) { TIM_ClearITPendingBit(TIM3, TIM_IT_Update); ADC_SoftwareStartConvCmd(ADC1, ENABLE); while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET); uint16_t adcValue = ADC_GetConversionValue(ADC1); USART_SendData(USART1, adcValue >> 8); while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); USART_SendData(USART1, adcValue & 0xff); while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); }}
这段代码是 STM32F103C8T6 开发板使用 ADC 和 USART 模块进行模拟量采集并通过串口传输的代码。
1. 初始化 GPIO 口和串口
2. 初始化 ADC 模块
3. 初始化定时器,配置定时器触发 ADC 采样和定时器中断
4. 中断服务函数中,通过 ADC 获取模拟量数值,然后通过 USART 将数值通过串口传输出去
代码注释如下:
```
GPIO_InitTypeDef GPIO_InitStructure; // 定义 GPIO 初始化结构体
USART_InitTypeDef USART_InitStructure; // 定义 USART 初始化结构体
ADC_InitTypeDef ADC_InitStructure; // 定义 ADC 初始化结构体
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; // 定义定时器初始化结构体
NVIC_InitTypeDef NVIC_InitStructure; // 定义中断初始化结构体
// 初始化 GPIO 口
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); // 使能 GPIOA 时钟
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; // 初始化 GPIOA 的第 0 位
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; // GPIOA 的第 0 位设置为模拟输入模式
GPIO_Init(GPIOA, &GPIO_InitStructure); // 初始化 GPIOA
// 初始化串口
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); // 使能 USART1 时钟
USART_InitStructure.USART_BaudRate = 115200; // 设置波特率为 115200
USART_InitStructure.USART_WordLength = USART_WordLength_8b; // 每个数据帧 8 位
USART_InitStructure.USART_StopBits = USART_StopBits_1; // 一个停止位
USART_InitStructure.USART_Parity = USART_Parity_No; // 无奇偶校验
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; // 无硬件流控制
USART_InitStructure.USART_Mode = USART_Mode_Tx; // USART1 发送模式
USART_Init(USART1, &USART_InitStructure); // 初始化 USART1
USART_Cmd(USART1, ENABLE); // 使能 USART1
// 初始化 ADC 模块
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); // 使能 ADC1 时钟
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; // 独立模式
ADC_InitStructure.ADC_ScanConvMode = DISABLE; // 禁止扫描模式
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; // 连续转换模式
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T3_TRGO; // 选择定时器 3 触发采样
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; // 数据右对齐
ADC_InitStructure.ADC_NbrOfChannel = 1; // 采样通道数为 1
ADC_Init(ADC1, &ADC_InitStructure); // 初始化 ADC1
ADC_Cmd(ADC1, ENABLE); // 使能 ADC1
// 初始化定时器
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); // 使能 TIM3 时钟
TIM_TimeBaseStructure.TIM_Period = 72000000 / 1000 - 1; // 设置计数器自动重装值,即定时器周期为 1ms
TIM_TimeBaseStructure.TIM_Prescaler = 72 - 1; // 设置分频系数,即定时器时钟为 1MHz
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; // 设置时钟分割
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; // 计数器向上计数
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); // 初始化定时器
TIM_SelectOutputTrigger(TIM3, TIM_TRGOSource_Update); // 配置定时器触发 ADC 采样
ADC_ExternalTrigConvCmd(ADC1, ENABLE); // 使能 ADC 外部触发转换
// 初始化定时器中断
TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE); // 使能定时器更新中断
NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; // 设置定时器 3 的中断向量
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; // 中断抢占优先级为 0
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; // 中断响应优先级为 0
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; // 使能中断
NVIC_Init(&NVIC_InitStructure); // 初始化中断向量表
// 定时器中断服务函数
void TIM3_IRQHandler(void) {
if (TIM_GetITStatus(TIM3, TIM_IT_Update) != RESET) { // 判断是否为定时器更新中断
TIM_ClearITPendingBit(TIM3, TIM_IT_Update); // 清除定时器更新中断标志位
ADC_SoftwareStartConvCmd(ADC1, ENABLE); // 开始 ADC 转换
while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET); // 等待 ADC 转换完成
uint16_t adcValue = ADC_GetConversionValue(ADC1); // 获取 ADC 转换结果
USART_SendData(USART1, adcValue >> 8); // 发送高 8 位
while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); // 等待数据发送完成
USART_SendData(USART1, adcValue & 0xff); // 发送低 8 位
while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); // 等待数据发送完成
}
}
```
相关推荐















