有穷自动机和正规表达式的转换
时间: 2024-06-04 12:13:52 浏览: 174
将正规表达式转换成有穷自动机:
1. 将正规表达式转换成语言的正则文法形式;
2. 对文法进行消除左递归和提取公因子的操作,得到一个无左递归的正则文法;
3. 将正则文法转换成一个等价的有穷自动机。
将有穷自动机转换成正规表达式:
1. 通过状态图生成一个等价的正则文法;
2. 对正则文法进行化简,去除无用产生式和无法到达的非终结符;
3. 将化简后的文法转换成正规表达式。
需要注意的是,有穷自动机和正规表达式之间的转换不是唯一的,可能会有多种等价的表达方式。
相关问题
python正规文法转有穷自动机代码
将正则表达式转换为NFA的算法是Thompson算法,然后将NFA转换为DFA的算法是子集构造算法。下面是Python代码实现:
```python
class State:
def __init__(self):
self.transitions = {}
def add_transition(self, symbol, state):
if symbol in self.transitions:
self.transitions[symbol].append(state)
else:
self.transitions[symbol] = [state]
class NFA:
def __init__(self, start, accept):
self.start = start
self.accept = accept
def match(self, string):
current_states = [self.start]
for symbol in string:
next_states = []
for state in current_states:
if symbol in state.transitions:
next_states.extend(state.transitions[symbol])
current_states = next_states
return self.accept in current_states
def regex_to_nfa(regex):
stack = []
for symbol in regex:
if symbol == '|':
right = stack.pop()
left = stack.pop()
start = State()
accept = State()
start.add_transition('eps', left.start)
start.add_transition('eps', right.start)
left.accept.add_transition('eps', accept)
right.accept.add_transition('eps', accept)
stack.append(NFA(start, accept))
elif symbol == '.':
right = stack.pop()
left = stack.pop()
left.accept.add_transition('eps', right.start)
stack.append(NFA(left.start, right.accept))
elif symbol == '*':
nfa = stack.pop()
start = State()
accept = State()
start.add_transition('eps', nfa.start)
start.add_transition('eps', accept)
nfa.accept.add_transition('eps', nfa.start)
nfa.accept.add_transition('eps', accept)
stack.append(NFA(start, accept))
else:
start = State()
accept = State()
start.add_transition(symbol, accept)
stack.append(NFA(start, accept))
return stack.pop()
def nfa_to_dfa(nfa):
def epsilon_closure(states):
closure = set(states)
queue = list(states)
while queue:
state = queue.pop(0)
if 'eps' in state.transitions:
for next_state in state.transitions['eps']:
if next_state not in closure:
closure.add(next_state)
queue.append(next_state)
return closure
alphabet = set()
for state in nfa.start.transitions:
if state != 'eps':
alphabet.add(state)
dfa_start = frozenset(epsilon_closure([nfa.start]))
dfa_states = {dfa_start}
dfa_transitions = {}
dfa_accept = set()
queue = [dfa_start]
while queue:
current_state = queue.pop(0)
for symbol in alphabet:
next_states = set()
for state in current_state:
if symbol in state.transitions:
next_states.update(state.transitions[symbol])
next_states = epsilon_closure(next_states)
if not next_states:
continue
if next_states not in dfa_states:
dfa_states.add(next_states)
queue.append(next_states)
dfa_transitions[(current_state, symbol)] = next_states
if nfa.accept in current_state:
dfa_accept.add(current_state)
return (dfa_states, alphabet, dfa_transitions, dfa_start, dfa_accept)
regex = input("Enter a regular expression: ")
nfa = regex_to_nfa(regex)
dfa_states, alphabet, dfa_transitions, dfa_start, dfa_accept = nfa_to_dfa(nfa)
print("States:", dfa_states)
print("Alphabet:", alphabet)
print("Transitions:", dfa_transitions)
print("Start state:", dfa_start)
print("Accept states:", dfa_accept)
```
这段代码可以将正则表达式转换为DFA,并打印出DFA的状态集合、字母表、转移函数、起始状态和接受状态。
阅读全文