def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42,42,1)) conv1 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs1) bn1 = layers.BatchNormalization()(conv1) pool1 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn1) do1 = layers.Dropout(0.3)(pool1) # channel 2 inputs2 = layers.Input(shape=(42,42,1)) conv2 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs2) bn2 = layers.BatchNormalization()(conv2) pool2 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn2) do2 = layers.Dropout(0.3)(pool2) # channel 3 inputs3 = layers.Input(shape=(42,42,1)) conv3 = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs3) bn3 = layers.BatchNormalization()(conv3) pool3 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn3) do3 = layers.Dropout(0.3)(pool3) # merge 1 merged = layers.Concatenate()([do1, do2, do3]) # interpretation 1 merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(merged) merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(merged_conv) flat = layers.Flatten()(merged_pool) flat_do = layers.Dropout(0.2)(flat) # outputs outputs = layers.Dense(1, activation='linear', name='spot')(flat_do) #Takes input u, v, os model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs]) model.compile( loss={'spot':'mse'}, optimizer=opt, metrics={'spot':tf.keras.metrics.MeanAbsoluteError()}, ) return model 如何引入CBAM模块
时间: 2023-08-22 21:07:11 浏览: 127
要引入CBAM模块,您需要先安装keras-cbam库,可以使用以下命令进行安装:
```
pip install keras-cbam
```
然后,您可以在您的代码中导入CBAM模块:
```
from keras_cbam import CBAM
```
接下来,在需要使用CBAM的地方,您可以将CBAM层添加到您的模型中。例如,您可以将CBAM层添加到您的merged_conv层后面,如下所示:
```
merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(merged)
merged_cbam = CBAM()(merged_conv)
merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(merged_cbam)
```
这样,您就可以在您的模型中使用CBAM模块了。
相关问题
def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42, 42, 1)) inputs2 = layers.Input(shape=(42, 42, 1)) inputs3 = layers.Input(shape=(42, 42, 1)) # merge 1 inputs = layers.Concatenate()([inputs1, inputs2, inputs3]) conv1 = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs)改为class定义形式
你可以将这段代码转化为一个类的形式,例如:
```
from tensorflow.keras import layers
from tensorflow.keras.regularizers import l2
class MeanSpot:
def __init__(self):
self.inputs1 = layers.Input(shape=(42, 42, 1))
self.inputs2 = layers.Input(shape=(42, 42, 1))
self.inputs3 = layers.Input(shape=(42, 42, 1))
def build(self):
# merge 1
inputs = layers.Concatenate()([self.inputs1, self.inputs2, self.inputs3])
conv1 = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs)
return conv1
```
这样,你就可以使用 `MeanSpot` 类来创建一个 `MEAN_Spot` 对象,然后调用 `build()` 方法来构建模型。例如:
```
mean_spot = MeanSpot()
model = mean_spot.build()
```
这个模型与原来的 `MEAN_Spot` 函数是等价的。
class BasicBlock(layers.Layer): expansion = 1 def __init__(self, in_channels, out_channels, stride=1):定义的basicblock模块之后如何放到def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42, 42, 1)) inputs2 = layers.Input(shape=(42, 42, 1)) inputs3 = layers.Input(shape=(42, 42, 1)) # merge 1 inputs = layers.Concatenate()([inputs1, inputs2, inputs3]) conv1 = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs)后面
可以使用`BasicBlock`类来定义一个基本块模块,然后在`MEAN_Spot`函数中调用该模块。具体实现方法如下:
```python
class BasicBlock(layers.Layer):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = layers.Conv2D(out_channels, kernel_size=3, strides=stride, padding='same', use_bias=False)
self.bn1 = layers.BatchNormalization()
self.relu = layers.ReLU()
self.conv2 = layers.Conv2D(out_channels * self.expansion, kernel_size=3, strides=1, padding='same', use_bias=False)
self.bn2 = layers.BatchNormalization()
if stride != 1 or in_channels != out_channels * self.expansion:
self.shortcut = keras.Sequential([
layers.Conv2D(out_channels * self.expansion, kernel_size=1, strides=stride, use_bias=False),
layers.BatchNormalization()
])
else:
self.shortcut = lambda x: x
def call(self, inputs):
x = self.conv1(inputs)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x += self.shortcut(inputs)
x = self.relu(x)
return x
def MEAN_Spot(opt):
# channel 1
inputs1 = layers.Input(shape=(42, 42, 1))
inputs2 = layers.Input(shape=(42, 42, 1))
inputs3 = layers.Input(shape=(42, 42, 1))
# merge 1
inputs = layers.Concatenate()([inputs1, inputs2, inputs3])
x = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs)
# basic block
x = BasicBlock(3, 16)(x)
x = BasicBlock(16, 32, stride=2)(x)
x = BasicBlock(32, 64, stride=2)(x)
# global average pooling
x = layers.GlobalAveragePooling2D()(x)
# output
outputs = layers.Dense(1, activation='sigmoid')(x)
# define model
model = keras.Model(inputs=[inputs1, inputs2, inputs3], outputs=outputs)
model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])
return model
```
这里我们在`MEAN_Spot`函数中使用`BasicBlock`类来构建基本块模块,并且将该模块的输出作为下一个模块的输入。最后使用全局平均池化层和全连接层得到最终的输出。
阅读全文