深度学习肝脏肿瘤CT图像分割代码
时间: 2024-04-12 08:25:52 浏览: 352
深度学习在医学图像分割领域有广泛的应用,包括肝脏肿瘤CT图像分割。以下是一个简单的深度学习肝脏肿瘤CT图像分割的代码示例:
```python
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate
def unet(input_size=(256, 256, 1)):
inputs = Input(input_size)
# 编码器部分
conv1 = Conv2D(64, 3, activation='relu', padding='same')(inputs)
conv1 = Conv2D(64, 3, activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, 3, activation='relu', padding='same')(pool1)
conv2 = Conv2D(128, 3, activation='relu', padding='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation='relu', padding='same')(pool2)
conv3 = Conv2D(256, 3, activation='relu', padding='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
# 解码器部分
conv4 = Conv2D(512, 3, activation='relu', padding='same')(pool3)
conv4 = Conv2D(512, 3, activation='relu', padding='same')(conv4)
up1 = UpSampling2D(size=(2, 2))(conv4)
merge1 = concatenate([conv3, up1], axis=3)
conv5 = Conv2D(256, 3, activation='relu', padding='same')(merge1)
conv5 = Conv2D(256, 3, activation='relu', padding='same')(conv5)
up2 = UpSampling2D(size=(2, 2))(conv5)
merge2 = concatenate([conv2, up2], axis=3)
conv6 = Conv2D(128, 3, activation='relu', padding='same')(merge2)
conv6 = Conv2D(128, 3, activation='relu', padding='same')(conv6)
up3 = UpSampling2D(size=(2, 2))(conv6)
merge3 = concatenate([conv1, up3], axis=3)
conv7 = Conv2D(64, 3, activation='relu', padding='same')(merge3)
conv7 = Conv2D(64, 3, activation='relu', padding='same')(conv7)
# 输出层
output = Conv2D(1, 1, activation='sigmoid')(conv7)
model = Model(inputs=inputs, outputs=output)
return model
# 创建模型
model = unet()
# 编译模型
model.compile(optimizer=tf.keras.optimizers.Adam(), loss='binary_crossentropy')
# 训练模型
model.fit(x_train, y_train, batch_size=16, epochs=10)
# 使用模型进行预测
predictions = model.predict(x_test)
```
这是一个基于U-Net网络结构的简单示例,用于肝脏肿瘤CT图像的分割。你可以根据自己的数据集和需求进行相应的修改和优化。
阅读全文
相关推荐


















