yolov5网络结构图 cbs
时间: 2023-09-02 09:04:21 浏览: 208
核心网网络结构和协议.ppt
YOLOv5网络结构图是一种用于目标检测任务的深度学习网络结构。YOLO(You Only Look Once)是一种实时目标检测方法,而YOLOv5是其最新版本。YOLOv5通过使用CNN(卷积神经网络)模型来检测输入图像中的目标。
YOLOv5网络结构图中的关键组件包括主干网络和检测头。主干网络负责从输入图像中提取特征信息,而检测头则用来生成目标的位置和类别预测。
主干网络通常采用特殊的卷积神经网络结构,如CSPDarknet53、EfficientNet等,用于学习图像特征。这些网络结构一般由卷积层、池化层和激活函数等组成,以完成图像特征的提取和转换。
检测头是YOLOv5网络的关键组件之一,它负责对主干网络提取的特征进行处理,以生成目标的位置和类别预测。检测头通常包括分类分支和回归分支。分类分支通过softmax函数将特征映射到目标类别的概率上,并对每个目标类别进行预测。回归分支用于预测边界框的位置信息,如边界框的中心坐标、宽度和高度等。
另外,YOLOv5还引入了一种称为CBS(Cross Stage Partial Network Sampling)的技术来改进网络的训练和推理效率。CBS将网络中的一些层分为两个部分,其中一部分用于训练,另一部分用于推理。通过使用这种方式,YOLOv5能够在减少计算量的同时保持准确性。
综上所述,YOLOv5网络结构图是一种用于目标检测任务的深度学习网络结构,具有主干网络和检测头。主干网络用于提取图像特征,而检测头用于生成目标的位置和类别预测。CBS技术则用于提高网络的训练和推理效率。
阅读全文